贝塞尔曲线(Bézier curve),又称贝兹曲线或贝济埃曲线,是应用于二维图形应用程序的数学曲线。1962,由法国工程师皮埃尔·贝塞尔(Pierre Bézier)所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计。贝塞尔曲线最初由Paul de Casteljau于1959年运用de ...
原理和简单推导 以三阶为例 : 设P P P 是一条抛物线上顺序三个不同的点。过P 和P 点的两切线交于P 点,在P 点的切线交P P 和P P 于P 和P ,则如下比例成立: 这是所谓抛物线的三切线定理。 当P ,P 固定,引入参数t,令上述比值为t: t ,即有: t从 变到 ,第一 二式就分别表示控制二边形的第一 二条边,它们是两条一次Bezier曲线。将一 二式代入第三式得: 当t从 变到 ...
2013-06-21 15:19 2 46037 推荐指数:
贝塞尔曲线(Bézier curve),又称贝兹曲线或贝济埃曲线,是应用于二维图形应用程序的数学曲线。1962,由法国工程师皮埃尔·贝塞尔(Pierre Bézier)所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计。贝塞尔曲线最初由Paul de Casteljau于1959年运用de ...
贝塞尔曲线于1962年,由法国工程师皮埃尔·贝塞尔(Pierre Bézier)所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计。贝塞尔曲线最初由 Paul de Casteljau 于1959年运用 de Casteljau 算法开发,以稳定数值的方法求出贝塞尔曲线。 1.线性贝塞尔曲线 ...
贝塞尔曲线 为什么要讲贝塞尔曲线,实际上 Android 中很多效果都有用到贝塞尔曲线。 QQ 的消息拽拖小红点旗袍消失的效果 QQ空间 直播页面右下角的礼物冒泡特效 水流 ...
绘制曲线 相对于直线而言,曲线的绘制与坐标关系更难理解一些。由于LayaAir引擎绘制的是贝塞尔曲线,所以本文中先针对贝塞尔曲线的基础进行说明,然后再结合引擎的API进行讲解。 一、贝塞尔曲线的基础">一、贝塞尔曲线的基础 贝塞尔曲线在港澳台等地称为貝茲曲線,新加坡马来西亚等地称为 ...
Bezier曲线的原理 Bezier曲线是应用于二维图形的曲线。曲线由顶点和控制点组成,通过改变控制点坐标可以改变曲线的形状。 一次Bezier曲线公式: 一次Bezier曲线是由P0至P1的连续点,描述的一条线段 二次Bezier曲线公式: 二次Bezier ...
一、原理 转自:http://www.2cto.com/kf/201401/275838.html Android动画学习Demo(3) 沿着贝塞尔曲线移动的Property Animation Property Animation中最重要,最基础的一个类就是ValueAnimator ...
下面三个公式分别是一次、二次和三次贝塞尔曲线公式: 通用的贝塞尔曲线公式如下: 可以看出,系数是由一个杨辉三角组成的。 这里的一次或者二次三次由控制点个数来决定,次数等于控制点个数-1。 实现的效果如下: 代码如下: 注意,运行时要先点几下 ...
使用UIBezierPath可以创建基于矢量的路径,此类是Core Graphics框架关于路径的封装。使用此类可以定义简单的形状,如椭圆、矩形或者有多个直线和曲线段组成的形状等。 UIBezierPath是CGPathRef数据类型的封装。如果是基于矢量形状的路径,都用直线和曲线去创建 ...