有向图中, u可达v不一定意味着v可达u. 相互可达则属于同一个强连通分量(Strongly Connected Component, SCC) 有向图和它的转置的强连通分量相同所有SCC构成一个DAG ...
给定一个有向图,要求寻找全部强联通分量。 首先要先明确几点: .点a和点b连通 当且仅当 存在边 a,b 和 b,a .将一个有向图的所有强连通分量看成顶点,则该图是有向无环图 dag 。 如下图: 还有明确几点性质: .对一个 聚点 强连通分量 的点进行DFS,则不会跑出这个连通分量。因为没有边可以出去。 如上图的h连通分量 .DFS后,post值最高的为源点 所以我们的思路可以是这样,找到聚点 ...
2013-05-05 16:59 0 3793 推荐指数:
有向图中, u可达v不一定意味着v可达u. 相互可达则属于同一个强连通分量(Strongly Connected Component, SCC) 有向图和它的转置的强连通分量相同所有SCC构成一个DAG ...
概念 连通分量:如果一对顶点\((u, v)\)之间有一条无向边,则称\(u\)和\(v\)连通。如果一个无向图\(G\)中的任意一对顶点均连通,则无向图\(G\)为一个连通图。连通分量指无向图的极大连通子图,可近似理解成连通块。 强连通分量:如果一对顶点\((u, v)\)之间 ...
1、简介tarjan是一种使用深度优先遍历(DFS)来寻找有向图强连通分量的一种算法。 2、知识准备栈、有向图、强连通分量、DFS。 3、快速理解tarjan算法的运行机制提到DFS,能想到的是通过栈来储存沿途的点,可以找到所有的环。环本身就是联通的,所以环对于强连通分量来说环已经很接近最终 ...
初谈这个话题相信每一位都会感到一丝疑惑,主要原因是这个词中“分量”一词,当然,如果仅是为了了解和使用这两个术语,就不必在意这个无关大体的词语。 好了,该谈谈正题了,所谓双连通与强连通,最大的差别,也是最本质的差别就是前者适用于无向图中,而后者适用于有向图。至于两 ...
【双连通分量】 一、边双连通分量定义 在分量内的任意两个点总可以找到两条边不相同的路径互相到达。总而言之就是一个圈,正着走反着走都可以相互到达,至少只有一个点。 二、点双连通分量的定义 参照上面,唯一的不同:任意两个点可以找到一个点不同的路径互相到达。也是一个圈,正反走都可以,至少为一个点 ...
在家的机会来了!!! 好了,今天要讲的呢,是要待在家好好学习一下的强连通分量。 概念 ...
B3609 [图论与代数结构 701] 强连通分量 一些概念: 若一张有向图中任意两个节点 \(x,y\),存在 \(x\) 到 \(y\) 的路径和 \(y\) 到 \(x\) 的路径,则称其为强连通图; 有向图的极大强连通子图被称为强连通分量。 在上文中,一个强连通子图 ...
在有向图中,如果2个顶点之间存在至少一条路径,则称这2个顶点强连通。如果有向图G中任意2个顶点都强连通,则称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量。 强连通分量的求法分为主流的2种,一种是Kosaraju,做2次DFS。另外一种就是伟大的计算机科学家Tarjan发明 ...