前言: 本次主要是练习下ICA模型,关于ICA模型的理论知识可以参考前面的博文:Deep learning:三十三(ICA模型)。本次实验的内容和步骤可以是参考UFLDL上的教程:Exercise:Independent Component Analysis。本次实验完成的内容 ...
基础知识: 在sparse coding 可参考Deep learning:二十六 Sparse coding简单理解 ,Deep learning:二十九 Sparse coding练习 模型中,学习到的基是超完备集的,也就是说基集中基的个数比数据的维数还要大,那么对一个数据而言,将其分解为基的线性组合时,这些基之间本身就是线性相关的。如果我们想要得到线性无关的基集,那么基集中元素的个数必须小 ...
2013-04-25 11:03 4 9718 推荐指数:
前言: 本次主要是练习下ICA模型,关于ICA模型的理论知识可以参考前面的博文:Deep learning:三十三(ICA模型)。本次实验的内容和步骤可以是参考UFLDL上的教程:Exercise:Independent Component Analysis。本次实验完成的内容 ...
在前面的logistic regression博文Deep learning:四(logistic regression练习) 中,我们知道logistic regression很适合做一些非线性方面的分类问题,不过它只适合处理二分类的问题,且在给出分类结果时还会给出结果的概率 ...
首先为什么会有Deep learning,我们得到一个结论就是Deep learning需要多层来获得更抽象的特征表达。 1.Deep learning与Neural Network 深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑 ...
目前,深度网络(Deep Nets)权值训练的主流方法还是梯度下降法(结合BP算法),当然在此之前可以用无监督的方法(比如说RBM,Autoencoder)来预训练参数的权值,而梯度下降法应用在深度网络中的一个缺点是权值的迭代变化值会很小,很容易收敛到的局部最优点;另一个缺点是梯度下降 ...
:Convolution and Pooling。也可以参考前面的博客:Deep learning:十七(Linear De ...
33.celery实现邮件异步发送 (1)task.py pip install celery redis (2)config.py (3)cms/views.py ...
《DEEP LEARNING》 《DEEP LEARNING》 1. 引言 1.1 什么是、为什么需要深度学习 1.2 简单的机器学习算法对数据表示的依赖 1.3 深度学习的历史趋势 最早的人 ...
Deep Learning(深度学习)学习笔记整理系列之常用模型(四、五、六、七) 转自: http://blog.csdn.net/zouxy09/article/details/8775524 九、Deep ...