机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1) 《Brief History of Machine Learning》 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM ...
原文转自:http: elevencitys.com p 深度学习是 机器学习研究中的一个新的领域,其动机在于建立 模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是 无监督学习的一种。 深度学习的概念源于 人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表 ...
2013-02-08 17:27 1 5178 推荐指数:
机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1) 《Brief History of Machine Learning》 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM ...
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目 ...
这节课的题目是Deep learning,个人以为说的跟Deep learning比较浅,跟autoencoder和PCA这块内容比较紧密。 林介绍了deep learning近年来受到了很大的关注:deep NNet概念很早就有,只是受限于硬件的计算能力和参数学习方法。 近年来深度学习 ...
2016是人工智能爆发的一年,各种层出不穷的新技术、新概念让人眼花缭乱。很多人都分不清人工智能(Artificial Intelligence,简称AI)、机器学习(Machine Learning,简称ML)以及深度学习(Deep Learning,简称DL)概念之间的不同。本文为理解机器学习 ...
本文作为自己学习李宏毅老师2021春机器学习课程所做笔记,记录自己身为入门阶段小白的学习理解,如果错漏、建议,还请各位博友不吝指教,感谢!! 一、Machine Learning概念理解 Machine Learning主要的任务是寻找一个合适的Function来完成我们的工作(非常不严 ...
Deep Learning Specialization 吴恩达老师最近在coursera上联合deeplearning.ai 推出了有关深度学习的一系列课程,相对于之前的machine learning课程,这次的课程更加实用,作业语言也有matlab改为了python从而更加贴合目前的趋势 ...
一、集成学习法 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好)。集成学习就是组合这里的多个弱监督模型以期得到一个更好更全面的强监督模型,集成学习潜在的思想 ...
1.流型介绍 流形学习的观点:认为我们所能观察到的数据实际上是由一个低维流行映射到高维空间的。由于数据内部特征的限制,一些高维中的数据会产生维度上的冗余,实际上这些数据只要比较低的维度就能唯一的表示。所以直观上来讲,一个流形好比是一个d">𝑑d维的空间,在一个m">𝑚m维的空间中& ...