参考自:Andrew Moore: http://www.cs.cmu.edu/~awm/tutorials 参考文档见:AndrewMoore_InformationGain.pdf 1、 信息熵:H(X) 描述X携带的信息量。 信息量越大(值变化越多),则越不确定,越不容易被预测 ...
信息增益是随机森林算法里面的一个很重要的算法,因为我们在选择节点的特征项的时候,就要通过信息增益或者是信息增益率来选择。这里先理解信息增益。 什么是信息增益呢 信息增益 Kullback Leibler divergence 又称information divergence,information gain,relative entropy 或者KLIC,其实在有些书中叫做相对熵,但是理解起相对熵 ...
2013-01-14 20:23 0 2941 推荐指数:
参考自:Andrew Moore: http://www.cs.cmu.edu/~awm/tutorials 参考文档见:AndrewMoore_InformationGain.pdf 1、 信息熵:H(X) 描述X携带的信息量。 信息量越大(值变化越多),则越不确定,越不容易被预测 ...
可能理解的不对。 决策树构建中节点的选择靠的就是信息增益了。 信息增益是一种有效的特征选择方法,理解起来很简单:增益嘛,肯定是有无这个特征对分类问题的影响的大小,这个特征存在的话,会对分类系统带来多少信息量,缺了他行不行? 既然是个增益 ...
决策树构建中节点的选择靠的就是信息增益了。 信息增益是一种有效的特征选择方法,理解起来很简单:增益嘛,肯定是有无这个特征对分类问题的影响的大小,这个特征存在的话,会对分类系统带来多少信息量,缺了他行不行? 既然是个增益,就是个差了,减法计算一下,谁减去谁呢? 这里就用到了信息熵的概念,放到 ...
上数据挖掘课的时候算过GINI指数,在寻找降维算法的时候突然看到了信息增益算法,突然发现信息增益算法和课上算的GINI指数很相似,于是就用在这次文本分类实验当中。总的来说信息增益算法是为了求特征t对于分类的贡献大小。贡献大则称信息增益大、贡献小信息增益小。文本分类自然是找那些对分类贡献大的词汇 ...
一:基础知识 1:个体信息量 -long2pi 2:平均信息量(熵) Info(D)=-Σi=1...n(pilog2pi) 比如我们将一个立方体A抛向空中,记落地时着地的面为f1,f1的取值为{1,2,3,4,5,6},f1的熵entropy(f1)=-(1/6*log ...
这是一个计算决策树中信息增益、信息增益比和GINI指标的例子。 相关阅读: Information Gainhttp://www.cs.csi.cuny.edu/~imberman/ai/Entropy%20and%20Information%20Gain ...
ID3、C4.5和CART三种经典的决策树模型分别使用了信息增益、信息增益比和基尼指数作为选择最优的划分属性的准则来构建决策树。以分类树来说,构建决策树的过程就是从根节点(整个数据集)向下进行节点分裂(划分数据子集)的过程,每次划分需要让分裂后的每个子集内部尽可能包含同一类样本。信息增益和信息增益 ...
离散特征信息增益计算 数据来自《.统计学习方法——李航》5.2.1节中贷款申请样本数据表 利用pandas的value_counts(),快速计算 refference:python详细步骤计算信息增益 ...