原文:机器学习小结:SVM

第一次接触SVM 支持向量机 还是四年前的事情了,那时用它做手写体数字识别,参考了一些书和文献,照着人家的步骤用Matlab敲出了PCA SVM的代码,识别率一般, 都没上,不好意思跟人打招呼。最囧的是,后来参加一个面试,人家问我神马是支持向量,我都答不上来。上了研究生,在各种模式识别和机器学习相关的课上,反复学习了这一经典算法,每次都有新的体会。借此机会做一个总结。 SVM是一种线性分类器。它 ...

2012-08-27 23:51 0 7001 推荐指数:

查看详情

[机器学习]SVM原理

  SVM机器学习中神一般的存在,虽然自深度学习以来有被拉下神坛的趋势,但不得不说SVM在这个领域有着举足轻重的地位。本文从Hard SVM 到 Dual Hard SVM再引进Kernel Trick,然后推广到常用的Soft Kernel SVM。   一、Hard SVM ...

Wed Mar 11 07:39:00 CST 2015 2 1965
SVM算法 机器学习

目录 梯度下降法、拉格朗日乘子法、KKT条件回顾感知器模型回顾SVM线性可分SVM线性不可分核函数SMO SVM线性可分,SVM线性不可分,核函数,要求会推导 ———————————————————————————— 学习率(步长)可以是任何数,如果是二阶 ...

Fri Jan 03 06:03:00 CST 2020 0 1066
机器学习实战之SVM

一引言:   支持向量机这部分确实很多,想要真正的去理解它,不仅仅知道理论,还要进行相关的代码编写和测试,二者想和结合,才能更好的帮助我们理解SVM这一非常优秀的分类算法   支持向量机是一种二类分类算法,假设一个平面可以将所有的样本分为两类,位于正侧的样本为一类,值为+1,而位于负一侧的样本 ...

Thu May 25 17:25:00 CST 2017 2 22597
机器学习】从SVM到SVR

注:最近在工作中,高频率的接触到了SVM模型,而且还有使用SVM模型做回归的情况,即SVR。另外考虑到自己从第一次知道这个模型到现在也差不多两年时间了,从最开始的腾云驾雾到现在有了一点直观的认识,花费了不少时间。因此在这里做个总结,比较一下使用同一个模型做分类和回归之间的差别,也纪念一下与SVM ...

Wed May 02 04:12:00 CST 2018 0 21269
机器学习算法--svm实战

1、不平衡数据分类问题 对于非平衡级分类超平面,使用不平衡SVC找出最优分类超平面,基本的思想是,我们先找到一个普通的分类超平面,自动进行校正,求出最优的分类超平面 测试代码如下: ...

Fri Nov 18 00:07:00 CST 2016 0 4280
OpenCV机器学习库函数--SVM

svm分类算法在opencv3中有了很大的变动,取消了CvSVMParams这个类,因此在参数设定上会有些改变。 opencv中的svm分类代码,来源于libsvm。 结果: 如果只是简单的点分类,svm的参数设置就这么两行就行了,但如果是其它更为复杂的分类,则需要设置更多 ...

Wed Nov 16 07:57:00 CST 2016 0 1782
机器学习】支持向量机(SVM

感谢中国人民大学胡鹤老师,课程深入浅出,非常好 一、关于SVM 可以做线性分类、非线性分类、线性回归等,相比逻辑回归、线性回归、决策树等模型(非神经网络)功效最好 传统线性分类:选出两堆数据的质心,并做中垂线(准确性低)——上图左 SVM:拟合的不是一条线,而是两条平行线,且这两条 ...

Mon Oct 30 18:11:00 CST 2017 0 1965
机器学习实验一SVM分类实验

一、实验目的和内容 (一)实验目的 1、熟悉支持向量机SVM(Support Vector Machine)模型分类算法的使用。 2、用svm-train中提供的代码框架(填入SVM分类器代码)用train.data训练数据提供的矩阵来训练参数得到训练模型model,利用 ...

Fri Aug 18 03:19:00 CST 2017 0 3970
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM