如引用请务必注明此文出自:http: www.cnblogs.com xbinworld LLE Locally linear embedding LLE 是一种非线性降维算法,它能够使降维后的数据较好地保持原有流形结构。LLE可以说是流形学习方法最经典的工作之一。很多后续的流形学习 降维方法都与LLE有密切联系。 见图 ,使用LLE将三维数据 b 映射到二维 c 之后,映射后的数据仍能保持原有的 ...
2012-07-09 15:00 6 22407 推荐指数:
1.matplotlib 首先看一下这个静态图绘制模块 静态图形处理 数据分析三剑客 Numpy : 主要为了给pandas提供数据源 pandas : 更 ...
前言 本系列为机器学习算法的总结和归纳,目的为了清晰阐述算法原理,同时附带上手代码实例,便于理解。 目录 k近邻(KNN) 决策树 线性回归 逻辑斯蒂回归 朴素贝叶斯 支持向量机(SVM ...
在机器学习的过程中,我们经常会遇见过拟合的问题。而输入数据或features的维度过高就是导致过拟合的问题之一。。维度越高,你的数据在每个特征维度上的分布就越稀疏,这对机器学习算法基本都是灾难性的。所有出现了很多降维的方法。今天我们要讨论的就是LDA降维。 LDA降维的思路是:如果两类数据线性 ...
局部线性嵌入(Locally Linear Embedding,以下简称LLE)也是非常重要的降维方法。和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,它广泛的用于图像图像识别,高维数据可视化等领域。下面 ...
,以及参考交大于剑老师教材总结。 简介 局部线性嵌入(Locally Linear Embed ...
在上一节介绍了一种最常见的降维方法PCA,本节介绍另一种降维方法LLE,本来打算对于其他降维算法一并进行一个简介,不过既然看到这里了,就对这些算法做一个相对详细的学习吧。 0.流形学习简介 在前面PCA中说到,PCA是一种无法将数据进行拉直,当直接对于曲面进行降维后,导致数据的重叠,难以 ...
(一)认识回归 回归是统计学中最有力的工具之中的一个。 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型、连续性而定义的。 顾名思义。分类算法用于离散型分布预測,如前面讲过的KNN、决策树、朴素贝叶斯、adaboost、SVM、Logistic ...