调参深度解析——学习率设置原则


学习率设置原则(在这主要以迁移学习为主):

由于模型已经在原始数据上收敛,所以应该设置较小学习率,在新数据上微调。若非迁移学习则先将学习率设置在0.01~0.001为宜,一定轮数之后再逐渐减缓,接近训练结束学习率的衰减应在100倍以上。

目标函数损失值 曲线(理想状态应该为绿色滑梯式下降曲线):

  1. 曲线 初始时 上扬 【红线】:
    Solution:初始 学习率过大 导致 振荡,应减小学习率,并 从头 开始训练 。
  2. 曲线 初始时 强势下降 没多久 归于水平 【紫线】:
    Solution:后期 学习率过大 导致 无法拟合,应减小学习率,并 重新训练 后几轮 。
  3. 曲线 全程缓慢 【黄线】:
    Solution:初始 学习率过小 导致 收敛慢,应增大学习率,并 从头 开始训练 。

 

参考链接:深度学习:学习率learning rate 的设定规律


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM