AES加密原理


AES加密算法

一、 概述

AES加密算法的提出是为了替代已被证明不安全的des加密算法

AES加密明文长度固定为128位,密钥长度可以是128、192、256位

AES加密明文与密文的长度是相同

 

 

二、 加密算法之初始变换

大致步骤

 

 

 

竖着排列字节

 

初始变换就是将明文的4x4矩阵与初始子密钥4x4矩阵进行异或操作

 

三、加密算法之九轮循环运算

1、字节代换(SubBytes)

把初始变换后的矩阵通过一张表进行映射代换

S-Box:

 

 

2、行移位(ShiftRows)

 

3、列混合(MixColumns)

 

 

左边的矩阵是固定的矩阵

这里的乘法与加法与我们平时使用的不一样,下面会再次提到

4、轮密钥加(AddRoundKey)

 

我们把上一操作得到的矩阵结果与轮密钥矩阵进行异或

 

轮密钥矩阵就是我们一开始的子密钥矩阵经过10轮子密钥拓展后的产物(一共得到10个轮

 

密钥矩阵)

 

我们将轮密钥加后得到的矩阵作为输入再次进行循环,如此反复,一共九轮,9次结束后进行最终轮的运算

 

四、最终轮运算

最终论运算与前面的轮运算很想,只是循环一次,并且没有列混合运算

 

最终轮运算结束后输出AES加密后的密文

 

五、密钥扩展过程

这个过程是在初始化的时候完成的

密钥扩展是一列一列进行扩展的

 

如果是四的倍数的化,注意到T()函数

 

 

1、字循环

将1个字中的四个字节循环左移1个字节,即将输入字[b0,b1,b2,b3]变换成[b1,b2,b3,b0]

Ps:这里的字相当于矩阵的列

 

2、字节代换

查S-Box映射表对这一列中的字节进行字节代换

 

3、轮常量异或

将上一步得到的结果同轮常量Rcon[j]进行异或,其中,j表示论数

这里,论常量Rcon[j]是固定值

 

 

最终将T()函数得到的结果与W[I-4]进行异或即为密钥扩展一列的结果

 

就这样我们就可以得到10轮密钥扩展的结果了

 

 

五、密钥扩展(清晰版)

自己回看的时候,发现密钥扩展写的十分模糊,下面抄了一位大佬博客的密钥扩展:

密钥扩展的复杂性是确保算法安全性的重要部分。当分组长度和密钥长度都是128位时,AES的加密算法共迭代10轮,需要10个子密钥。AES的密钥扩展的目的是将输入的128位密钥扩展成11个128位的子密钥。AES的密钥扩展算法是以字为一个基本单位(一个字为4个字节),刚好是密钥矩阵的一列。因此4个字(128位)密钥需要扩展成11个子密钥,共44个字。

AES首先将初始密钥输入到一个4*4的状态矩阵中,如下图所示。

 

 

这个44矩阵的每一列的4个字节组成一个字,矩阵4列的4个字依次命名为W[0]、W[1]、W[2]和W[3],它们构成一个以字为单位的数组W。例如,设密钥K为"abcdefghijklmnop",则K0 = ‘a’,K1 = ‘b’, K2 = ‘c’,K3 = ‘d’,W[0] = “abcd”。接着,对W数组扩充40个新列,构成总共44列的扩展密钥数组。新列以如下的递归方式产生:

(1)如果i不是4的倍数,那么第i列由如下等式确定:W[i]=W[i-4]⨁W[i-1];

(2)如果i是4的倍数,那么第i列由如下等式确定:W[i]=W[i-4]⨁T(W[i-1]);

其中,T是一个有点复杂的函数。函数T由3部分组成:字循环、字节代换和轮常量异或,这3部分的作用分别如下。

a.字循环:将1个字中的4个字节循环左移1个字节。即将输入字[b0, b1, b2, b3]变换成[b1,b2,b3,b0]。

b.字节代换:对字循环的结果使用S盒进行字节代换。

c.轮常量异或:将前两步的结果同轮常量Rcon[j]进行异或,其中j表示轮数。

 

 

抄自: https://blog.csdn.net/a745233700/article/details/102328920

六、列混合的计算

列混合的加法与乘法不同于我们认为的加法与乘法

 

 

列混合的加法是异或运算

 

 

列混合的乘法更复杂

 

矩阵相乘时,其中两个数相乘我们可以化简成二进制数的相乘.,如上图

当第一个乘数为2的时候,如果,a7的值为0,则相乘结果为(a6a5a4a3a2a1a00)  向相

当于左移了一位。如果a7的值为1,则相乘的结果为(a6a5a4a3a2a1a00) xor (00011011)

当第一个乘数为0x3的时候,我们可以化成(0x2 + 0x1)再转化成二进制进行相乘,需要注意

的是,这里的相加实则是异或

这种运算叫 xtime 运算,运用了多项式相除的思想,参考: https://blog.csdn.net/sinat_36329095/article/details/106976277

 

 

参考 土豆姐姐的视频

https://www.bilibili.com/video/BV1i341187fK?from=search&seid=3767483240971920055&spm_id_from=333.337.0.0

 

七、最喜欢的一份 AES 加密

#include <stdint.h>
#include <stdio.h>
#include <string.h>

typedef struct {
    uint32_t eK[44], dK[44];    // encKey, decKey
    int Nr; // 10 rounds
}AesKey;

#define BLOCKSIZE 16  //AES-128分组长度为16字节

// uint8_t y[4] -> uint32_t x
#define LOAD32H(x, y) \
  do { (x) = ((uint32_t)((y)[0] & 0xff)<<24) | ((uint32_t)((y)[1] & 0xff)<<16) | \
             ((uint32_t)((y)[2] & 0xff)<<8)  | ((uint32_t)((y)[3] & 0xff));} while(0)

// uint32_t x -> uint8_t y[4]
#define STORE32H(x, y) \
  do { (y)[0] = (uint8_t)(((x)>>24) & 0xff); (y)[1] = (uint8_t)(((x)>>16) & 0xff);   \
       (y)[2] = (uint8_t)(((x)>>8) & 0xff); (y)[3] = (uint8_t)((x) & 0xff); } while(0)

// 从uint32_t x中提取从低位开始的第n个字节
#define BYTE(x, n) (((x) >> (8 * (n))) & 0xff)

/* used for keyExpansion */
// 字节替换然后循环左移1位
#define MIX(x) (((S[BYTE(x, 2)] << 24) & 0xff000000) ^ ((S[BYTE(x, 1)] << 16) & 0xff0000) ^ \
                ((S[BYTE(x, 0)] << 8) & 0xff00) ^ (S[BYTE(x, 3)] & 0xff))

// uint32_t x循环左移n位
#define ROF32(x, n)  (((x) << (n)) | ((x) >> (32-(n))))
// uint32_t x循环右移n位
#define ROR32(x, n)  (((x) >> (n)) | ((x) << (32-(n))))

/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
// AES-128轮常量
static const uint32_t rcon[10] = {
        0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL, 0x10000000UL,
        0x20000000UL, 0x40000000UL, 0x80000000UL, 0x1B000000UL, 0x36000000UL
};
// S盒
unsigned char S[256] = {
        0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
        0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
        0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
        0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
        0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
        0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
        0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
        0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
        0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
        0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
        0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
        0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
        0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
        0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
        0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
        0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};

//逆S盒
unsigned char inv_S[256] = {
        0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
        0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
        0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
        0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
        0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
        0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
        0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
        0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
        0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
        0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
        0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
        0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
        0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
        0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
        0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
        0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};

/* copy in[16] to state[4][4] */
int loadStateArray(uint8_t(*state)[4], const uint8_t* in) {
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[j][i] = *in++;
        }
    }
    return 0;
}

/* copy state[4][4] to out[16] */
int storeStateArray(uint8_t(*state)[4], uint8_t* out) {
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            *out++ = state[j][i];
        }
    }
    return 0;
}
//秘钥扩展
int keyExpansion(const uint8_t* key, uint32_t keyLen, AesKey* aesKey) {

    if (NULL == key || NULL == aesKey) {
        printf("keyExpansion param is NULL\n");
        return -1;
    }

    if (keyLen != 16) {
        printf("keyExpansion keyLen = %d, Not support.\n", keyLen);
        return -1;
    }

    uint32_t* w = aesKey->eK;  //加密秘钥
    uint32_t* v = aesKey->dK;  //解密秘钥

    /* keyLen is 16 Bytes, generate uint32_t W[44]. */

    /* W[0-3] */
    for (int i = 0; i < 4; ++i) {
        LOAD32H(w[i], key + 4 * i);
    }

    /* W[4-43] */
    for (int i = 0; i < 10; ++i) {
        w[4] = w[0] ^ MIX(w[3]) ^ rcon[i];
        w[5] = w[1] ^ w[4];
        w[6] = w[2] ^ w[5];
        w[7] = w[3] ^ w[6];
        w += 4;
    }

    w = aesKey->eK + 44 - 4;
    //解密秘钥矩阵为加密秘钥矩阵的倒序,方便使用,把ek的11个矩阵倒序排列分配给dk作为解密秘钥
    //即dk[0-3]=ek[41-44], dk[4-7]=ek[37-40]... dk[41-44]=ek[0-3]
    for (int j = 0; j < 11; ++j) {

        for (int i = 0; i < 4; ++i) {
            v[i] = w[i];
        }
        w -= 4;
        v += 4;
    }

    return 0;
}

// 轮秘钥加
int addRoundKey(uint8_t(*state)[4], const uint32_t* key) {
    uint8_t k[4][4];

    /* i: row, j: col */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            k[i][j] = (uint8_t)BYTE(key[j], 3 - i);  /* 把 uint32 key[4] 先转换为矩阵 uint8 k[4][4] */
            state[i][j] ^= k[i][j];
        }
    }

    return 0;
}

//字节替换
int subBytes(uint8_t(*state)[4]) {
    /* i: row, j: col */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[i][j] = S[state[i][j]]; //直接使用原始字节作为S盒数据下标
        }
    }

    return 0;
}

//逆字节替换
int invSubBytes(uint8_t(*state)[4]) {
    /* i: row, j: col */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[i][j] = inv_S[state[i][j]];
        }
    }
    return 0;
}

//行移位
int shiftRows(uint8_t(*state)[4]) {
    uint32_t block[4] = { 0 };

    /* i: row */
    for (int i = 0; i < 4; ++i) {
        //便于行循环移位,先把一行4字节拼成uint_32结构,移位后再转成独立的4个字节uint8_t
        LOAD32H(block[i], state[i]);
        block[i] = ROF32(block[i], 8 * i);
        STORE32H(block[i], state[i]);
    }

    return 0;
}

//逆行移位
int invShiftRows(uint8_t(*state)[4]) {
    uint32_t block[4] = { 0 };

    /* i: row */
    for (int i = 0; i < 4; ++i) {
        LOAD32H(block[i], state[i]);
        block[i] = ROR32(block[i], 8 * i);
        STORE32H(block[i], state[i]);
    }

    return 0;
}

/* Galois Field (256) Multiplication of two Bytes */
// 两字节的伽罗华域乘法运算
uint8_t GMul(uint8_t u, uint8_t v) {
    uint8_t p = 0;

    for (int i = 0; i < 8; ++i) {
        if (u & 0x01) {    //
            p ^= v;
        }

        int flag = (v & 0x80);
        v <<= 1;
        if (flag) {
            v ^= 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
        }

        u >>= 1;
    }

    return p;
}

// 列混合
int mixColumns(uint8_t(*state)[4]) {
    uint8_t tmp[4][4];
    uint8_t M[4][4] = { {0x02, 0x03, 0x01, 0x01},
                       {0x01, 0x02, 0x03, 0x01},
                       {0x01, 0x01, 0x02, 0x03},
                       {0x03, 0x01, 0x01, 0x02} };

    /* copy state[4][4] to tmp[4][4] */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            tmp[i][j] = state[i][j];
        }
    }

    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {  //伽罗华域加法和乘法
            state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
                ^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
        }
    }

    return 0;
}

// 逆列混合
int invMixColumns(uint8_t(*state)[4]) {
    uint8_t tmp[4][4];
    uint8_t M[4][4] = { {0x0E, 0x0B, 0x0D, 0x09},
                       {0x09, 0x0E, 0x0B, 0x0D},
                       {0x0D, 0x09, 0x0E, 0x0B},
                       {0x0B, 0x0D, 0x09, 0x0E} };  //使用列混合矩阵的逆矩阵

    /* copy state[4][4] to tmp[4][4] */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            tmp[i][j] = state[i][j];
        }
    }

    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
                ^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
        }
    }

    return 0;
}

// AES-128加密接口,输入key应为16字节长度,输入长度应该是16字节整倍数,
// 这样输出长度与输入长度相同,函数调用外部为输出数据分配内存
int aesEncrypt(const uint8_t* key, uint32_t keyLen, const uint8_t* pt, uint8_t* ct, uint32_t len) {

    AesKey aesKey;
    uint8_t* pos = ct;
    const uint32_t* rk = aesKey.eK;  //解密秘钥指针
    uint8_t out[BLOCKSIZE] = { 0 };
    uint8_t actualKey[16] = { 0 };
    uint8_t state[4][4] = { 0 };

    if (NULL == key || NULL == pt || NULL == ct) {
        printf("param err.\n");
        return -1;
    }

    if (keyLen > 16) {
        printf("keyLen must be 16.\n");
        return -1;
    }

    if (len % BLOCKSIZE) {
        printf("inLen is invalid.\n");
        return -1;
    }

    memcpy(actualKey, key, keyLen);
    keyExpansion(actualKey, 16, &aesKey);  // 秘钥扩展

    // 使用ECB模式循环加密多个分组长度的数据
    for (int i = 0; i < len; i += BLOCKSIZE) {
        // 把16字节的明文转换为4x4状态矩阵来进行处理
        loadStateArray(state, pt);
        // 轮秘钥加
        addRoundKey(state, rk);

        for (int j = 1; j < 10; ++j) {
            rk += 4;
            subBytes(state);   // 字节替换
            shiftRows(state);  // 行移位
            mixColumns(state); // 列混合
            addRoundKey(state, rk); // 轮秘钥加
        }

        subBytes(state);    // 字节替换
        shiftRows(state);  // 行移位
        // 此处不进行列混合
        addRoundKey(state, rk + 4); // 轮秘钥加

        // 把4x4状态矩阵转换为uint8_t一维数组输出保存
        storeStateArray(state, pos);

        pos += BLOCKSIZE;  // 加密数据内存指针移动到下一个分组
        pt += BLOCKSIZE;   // 明文数据指针移动到下一个分组
        rk = aesKey.eK;    // 恢复rk指针到秘钥初始位置
    }
    return 0;
}

// AES128解密, 参数要求同加密
int aesDecrypt(const uint8_t* key, uint32_t keyLen, const uint8_t* ct, uint8_t* pt, uint32_t len) {
    AesKey aesKey;
    uint8_t* pos = pt;
    const uint32_t* rk = aesKey.dK;  //解密秘钥指针
    uint8_t out[BLOCKSIZE] = { 0 };
    uint8_t actualKey[16] = { 0 };
    uint8_t state[4][4] = { 0 };

    if (NULL == key || NULL == ct || NULL == pt) {
        printf("param err.\n");
        return -1;
    }

    if (keyLen > 16) {
        printf("keyLen must be 16.\n");
        return -1;
    }

    if (len % BLOCKSIZE) {
        printf("inLen is invalid.\n");
        return -1;
    }

    memcpy(actualKey, key, keyLen);
    keyExpansion(actualKey, 16, &aesKey);  //秘钥扩展,同加密

    for (int i = 0; i < len; i += BLOCKSIZE) {
        // 把16字节的密文转换为4x4状态矩阵来进行处理
        loadStateArray(state, ct);
        // 轮秘钥加,同加密
        addRoundKey(state, rk);

        for (int j = 1; j < 10; ++j) {
            rk += 4;
            invShiftRows(state);    // 逆行移位
            invSubBytes(state);     // 逆字节替换,这两步顺序可以颠倒
            addRoundKey(state, rk); // 轮秘钥加,同加密
            invMixColumns(state);   // 逆列混合
        }

        invSubBytes(state);   // 逆字节替换
        invShiftRows(state);  // 逆行移位
        // 此处没有逆列混合
        addRoundKey(state, rk + 4);  // 轮秘钥加,同加密

        storeStateArray(state, pos);  // 保存明文数据
        pos += BLOCKSIZE;  // 输出数据内存指针移位分组长度
        ct += BLOCKSIZE;   // 输入数据内存指针移位分组长度
        rk = aesKey.dK;    // 恢复rk指针到秘钥初始位置
    }
    return 0;
}
void printHex(const uint8_t* ptr, int len, const char* tag) {
    printf("%s\ndata[%d]: ", tag, len);
    for (int i = 0; i < len; ++i) {
        printf("%.2X ", *ptr++);
    }
    printf("\n");
}

int main() {

    // case 1
    const uint8_t key[16] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
    const uint8_t pt[16] = { 0x32, 0x43, 0xf6, 0xa8, 0x88, 0x5a, 0x30, 0x8d, 0x31, 0x31, 0x98, 0xa2, 0xe0, 0x37, 0x07, 0x34 };
    uint8_t ct[16] = { 0 };     // 外部申请输出数据内存,用于加密后的数据
    uint8_t plain[16] = { 0 };  // 外部申请输出数据内存,用于解密后的数据

    aesEncrypt(key, 16, pt, ct, 16); // 加密
    printHex(pt, 16, "plain data:"); // 打印初始明文数据
    printf("expect cipher:\n39 25 84 1D 02 DC 09 FB DC 11 85 97 19 6A 0B 32\n");  // 正常解密后的数据内容

    printHex(ct, 16, "after encryption:");  // 打印加密后的密文

    aesDecrypt(key, 16, ct, plain, 16);       // 解密
    printHex(plain, 16, "after decryption:"); // 打印解密后的明文数据

    // case 2
    // 16字节字符串形式秘钥
    const uint8_t key2[] = "1234567890123456";
    // 32字节长度字符串明文
    const uint8_t* data = (uint8_t*)"abcdefghijklmnopqrstuvwxyz123456";
    uint8_t ct2[32] = { 0 };    //外部申请输出数据内存,用于存放加密后数据
    uint8_t plain2[32] = { 0 }; //外部申请输出数据内存,用于存放解密后数据
    //加密32字节明文
    aesEncrypt(key2, 16, data, ct2, 32);

    printf("\nplain text:\n%s\n", data);
    printf("expect ciphertext:\nfcad715bd73b5cb0488f840f3bad7889\n");
    printHex(ct2, 32, "after encryption:");

    // 解密32字节密文
    aesDecrypt(key2, 16, ct2, plain2, 32);
    // 打印16进制形式的解密后的明文
    printHex(plain2, 32, "after decryption:");

    // 因为加密前的数据为可见字符的字符串,打印解密后的明文字符,与加密前明文进行对比
    printf("output plain text\n");
    for (int i = 0; i < 32; ++i) {
        printf("%c ", plain2[i]);
    }

    return 0;
} 
//抄自https://blog.csdn.net/gq1870554301/article/details/118737728

 

八、易于逆向调试的AES加密

1、ECB

// 打造一个专门用于调试的 AES Ebc 加密环境 


#include <stdint.h>
#include <stdio.h>
#include <string.h>

typedef struct {
    uint32_t eK[44], dK[44];    // encKey, decKey
    int Nr; // 10 rounds
}AesKey;

#define BLOCKSIZE 16  //AES-128分组长度为16字节

// uint8_t y[4] -> uint32_t x
#define LOAD32H(x, y) \
  do { (x) = ((uint32_t)((y)[0] & 0xff)<<24) | ((uint32_t)((y)[1] & 0xff)<<16) | \
             ((uint32_t)((y)[2] & 0xff)<<8)  | ((uint32_t)((y)[3] & 0xff));} while(0)

// uint32_t x -> uint8_t y[4]
#define STORE32H(x, y) \
  do { (y)[0] = (uint8_t)(((x)>>24) & 0xff); (y)[1] = (uint8_t)(((x)>>16) & 0xff);   \
       (y)[2] = (uint8_t)(((x)>>8) & 0xff); (y)[3] = (uint8_t)((x) & 0xff); } while(0)

// 从uint32_t x中提取从低位开始的第n个字节
#define BYTE(x, n) (((x) >> (8 * (n))) & 0xff)

/* used for keyExpansion */
// 字节替换然后循环左移1位
#define MIX(x) (((S[BYTE(x, 2)] << 24) & 0xff000000) ^ ((S[BYTE(x, 1)] << 16) & 0xff0000) ^ \
                ((S[BYTE(x, 0)] << 8) & 0xff00) ^ (S[BYTE(x, 3)] & 0xff))

// uint32_t x循环左移n位
#define ROF32(x, n)  (((x) << (n)) | ((x) >> (32-(n))))
// uint32_t x循环右移n位
#define ROR32(x, n)  (((x) >> (n)) | ((x) << (32-(n))))

/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
// AES-128轮常量
static const uint32_t rcon[10] = {
        0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL, 0x10000000UL,
        0x20000000UL, 0x40000000UL, 0x80000000UL, 0x1B000000UL, 0x36000000UL
};
// S盒
unsigned char S[256] = {
        0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
        0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
        0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
        0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
        0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
        0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
        0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
        0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
        0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
        0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
        0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
        0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
        0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
        0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
        0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
        0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};

//逆S盒
unsigned char inv_S[256] = {
        0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
        0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
        0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
        0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
        0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
        0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
        0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
        0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
        0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
        0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
        0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
        0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
        0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
        0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
        0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
        0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};

/* copy in[16] to state[4][4] */
int loadStateArray(uint8_t(*state)[4], const uint8_t* in) {
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[j][i] = *in++;
        }
    }
    return 0;
}

/* copy state[4][4] to out[16] */
int storeStateArray(uint8_t(*state)[4], uint8_t* out) {
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            *out++ = state[j][i];
        }
    }
    return 0;
}
//秘钥扩展
int keyExpansion(const uint8_t* key, uint32_t keyLen, AesKey* aesKey) {

    if (NULL == key || NULL == aesKey) {
        printf("keyExpansion param is NULL\n");
        return -1;
    }

    if (keyLen != 16) {
        printf("keyExpansion keyLen = %d, Not support.\n", keyLen);
        return -1;
    }

    uint32_t* w = aesKey->eK;  //加密秘钥
    uint32_t* v = aesKey->dK;  //解密秘钥

    /* keyLen is 16 Bytes, generate uint32_t W[44]. */

    /* W[0-3] */
    for (int i = 0; i < 4; ++i) {
        LOAD32H(w[i], key + 4 * i);
    }

    /* W[4-43] */
    for (int i = 0; i < 10; ++i) {
        w[4] = w[0] ^ MIX(w[3]) ^ rcon[i];
        w[5] = w[1] ^ w[4];
        w[6] = w[2] ^ w[5];
        w[7] = w[3] ^ w[6];
        w += 4;
    }

    w = aesKey->eK + 44 - 4;
    //解密秘钥矩阵为加密秘钥矩阵的倒序,方便使用,把ek的11个矩阵倒序排列分配给dk作为解密秘钥
    //即dk[0-3]=ek[41-44], dk[4-7]=ek[37-40]... dk[41-44]=ek[0-3]
    for (int j = 0; j < 11; ++j) {

        for (int i = 0; i < 4; ++i) {
            v[i] = w[i];
        }
        w -= 4;
        v += 4;
    }

    return 0;
}

// 轮秘钥加
int addRoundKey(uint8_t(*state)[4], const uint32_t* key) {
    uint8_t k[4][4];

    /* i: row, j: col */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            k[i][j] = (uint8_t)BYTE(key[j], 3 - i);  /* 把 uint32 key[4] 先转换为矩阵 uint8 k[4][4] */
            state[i][j] ^= k[i][j];
        }
    }

    return 0;
}

//字节替换
int subBytes(uint8_t(*state)[4]) {
    /* i: row, j: col */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[i][j] = S[state[i][j]]; //直接使用原始字节作为S盒数据下标
        }
    }

    return 0;
}

//逆字节替换
int invSubBytes(uint8_t(*state)[4]) {
    /* i: row, j: col */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[i][j] = inv_S[state[i][j]];
        }
    }
    return 0;
}

//行移位
int shiftRows(uint8_t(*state)[4]) {
    uint32_t block[4] = { 0 };

    /* i: row */
    for (int i = 0; i < 4; ++i) {
        //便于行循环移位,先把一行4字节拼成uint_32结构,移位后再转成独立的4个字节uint8_t
        LOAD32H(block[i], state[i]);
        block[i] = ROF32(block[i], 8 * i);
        STORE32H(block[i], state[i]);
    }

    return 0;
}

//逆行移位
int invShiftRows(uint8_t(*state)[4]) {
    uint32_t block[4] = { 0 };

    /* i: row */
    for (int i = 0; i < 4; ++i) {
        LOAD32H(block[i], state[i]);
        block[i] = ROR32(block[i], 8 * i);
        STORE32H(block[i], state[i]);
    }

    return 0;
}

/* Galois Field (256) Multiplication of two Bytes */
// 两字节的伽罗华域乘法运算
uint8_t GMul(uint8_t u, uint8_t v) {
    uint8_t p = 0;

    for (int i = 0; i < 8; ++i) {
        if (u & 0x01) {    //
            p ^= v;
        }

        int flag = (v & 0x80);
        v <<= 1;
        if (flag) {
            v ^= 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
        }

        u >>= 1;
    }

    return p;
}

// 列混合
int mixColumns(uint8_t(*state)[4]) {
    uint8_t tmp[4][4];
    uint8_t M[4][4] = { {0x02, 0x03, 0x01, 0x01},
                       {0x01, 0x02, 0x03, 0x01},
                       {0x01, 0x01, 0x02, 0x03},
                       {0x03, 0x01, 0x01, 0x02} };

    /* copy state[4][4] to tmp[4][4] */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            tmp[i][j] = state[i][j];
        }
    }

    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {  //伽罗华域加法和乘法
        
        // debug : 
        // printf("0x%x = 0x%x ^ 0x%x ^ 0x%x ^ 0x%x\n",state[j][0],GMul(M[i][0], tmp[0][j]), GMul(M[i][1], tmp[1][j]),GMul(M[i][2], tmp[2][j]),GMul(M[i][3], tmp[3][j]));
        // getchar();
        
            state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
                ^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
        }
    }

    return 0;
}

// 逆列混合
int invMixColumns(uint8_t(*state)[4]) {
    uint8_t tmp[4][4];
    uint8_t M[4][4] = { {0x0E, 0x0B, 0x0D, 0x09},
                       {0x09, 0x0E, 0x0B, 0x0D},
                       {0x0D, 0x09, 0x0E, 0x0B},
                       {0x0B, 0x0D, 0x09, 0x0E} };  //使用列混合矩阵的逆矩阵

    /* copy state[4][4] to tmp[4][4] */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            tmp[i][j] = state[i][j];
        }
    }

    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
                ^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
        }
    }

    return 0;
}

void debug_uint8(uint8_t(*state_debug)[4],char *tag,int start_debug = 1){        // 用于测试 unsigned __int8 类型的数组 
    printf("%s =>\n",tag);
    for(int i = 0;i<=3;i++){
        for(int j = 0;j<=3;j++){
            printf("0x%x ",state_debug[i][j]);
        }
        printf("\n");
    }
    printf("\n");
    if(start_debug){
        getchar();
    }
}

void debug_uint8_single(uint8_t* arr,char* tag,int start_debug = 1){
    printf("%s =>\n",tag);
    for(int i = 0;i<=15;i++){
        printf("0x%x ",arr[i]);
    }
    printf("\n");
    if(start_debug){
        getchar();
    }
}

// AES-128加密接口,输入key应为16字节长度,输入长度应该是16字节整倍数,
// 这样输出长度与输入长度相同,函数调用外部为输出数据分配内存
int aesEncrypt(const uint8_t* key, uint32_t keyLen, const uint8_t* pt, uint8_t* ct, uint32_t len) {

    AesKey aesKey;
    uint8_t* pos = ct;
    const uint32_t* rk = aesKey.eK;  //解密秘钥指针
    uint8_t out[BLOCKSIZE] = { 0 };
    uint8_t actualKey[16] = { 0 };
    uint8_t state[4][4] = { 0 };

    if (NULL == key || NULL == pt || NULL == ct) {
        printf("param err.\n");
        return -1;
    }

    if (keyLen > 16) {
        printf("keyLen must be 16.\n");
        return -1;
    }

    if (len % BLOCKSIZE) {
        printf("inLen is invalid.\n");
        return -1;
    }

    memcpy(actualKey, key, keyLen);
    keyExpansion(actualKey, 16, &aesKey);  // 秘钥扩展
//    debug_uint8_single(actualKey,"keyExpansion");
    // 使用ECB模式循环加密多个分组长度的数据
    for (int i = 0; i < len; i += BLOCKSIZE) {
        // 把16字节的明文转换为4x4状态矩阵来进行处理
        loadStateArray(state, pt);
//        debug_uint8(state,"loadStateArray");
        // 轮秘钥加
        addRoundKey(state, rk);
//        debug_uint8(state,"addRoundKey");
        for (int j = 1; j < 10; ++j) {
            rk += 4;
            subBytes(state);   // 字节替换
//            debug_uint8(state,"subBytes");
            
            shiftRows(state);  // 行移位
//            debug_uint8(state,"shiftRows");
            
            mixColumns(state); // 列混合
//            debug_uint8(state,"mixColumns");
            
            addRoundKey(state, rk); // 轮秘钥加
//            debug_uint8(state,"addRoundKey");
        }

        subBytes(state);    // 字节替换
//        debug_uint8(state,"subBytes");
        
        shiftRows(state);  // 行移位
//        debug_uint8(state,"shiftRows");
        
        // 此处不进行列混合
        addRoundKey(state, rk + 4); // 轮秘钥加
//        debug_uint8(state,"addRoundKey");
        
        // 把4x4状态矩阵转换为uint8_t一维数组输出保存
        storeStateArray(state, pos);
//        debug_uint8(state,"storeStateArray");

        pos += BLOCKSIZE;  // 加密数据内存指针移动到下一个分组
        pt += BLOCKSIZE;   // 明文数据指针移动到下一个分组
        rk = aesKey.eK;    // 恢复rk指针到秘钥初始位置
    }
    return 0;
}

// AES128解密, 参数要求同加密
int aesDecrypt(const uint8_t* key, uint32_t keyLen, const uint8_t* ct, uint8_t* pt, uint32_t len) {
    AesKey aesKey;
    uint8_t* pos = pt;
    const uint32_t* rk = aesKey.dK;  //解密秘钥指针
    uint8_t out[BLOCKSIZE] = { 0 };
    uint8_t actualKey[16] = { 0 };
    uint8_t state[4][4] = { 0 };

    if (NULL == key || NULL == ct || NULL == pt) {
        printf("param err.\n");
        return -1;
    }

    if (keyLen > 16) {
        printf("keyLen must be 16.\n");
        return -1;
    }

    if (len % BLOCKSIZE) {
        printf("inLen is invalid.\n");
        return -1;
    }

    memcpy(actualKey, key, keyLen);
    keyExpansion(actualKey, 16, &aesKey);  //秘钥扩展,同加密

    for (int i = 0; i < len; i += BLOCKSIZE) {
        // 把16字节的密文转换为4x4状态矩阵来进行处理
        loadStateArray(state, ct);
        // 轮秘钥加,同加密
        addRoundKey(state, rk);

        for (int j = 1; j < 10; ++j) {
            rk += 4;
            invShiftRows(state);    // 逆行移位
            invSubBytes(state);     // 逆字节替换,这两步顺序可以颠倒
            addRoundKey(state, rk); // 轮秘钥加,同加密
            invMixColumns(state);   // 逆列混合
        }

        invSubBytes(state);   // 逆字节替换
        invShiftRows(state);  // 逆行移位
        // 此处没有逆列混合
        addRoundKey(state, rk + 4);  // 轮秘钥加,同加密

        storeStateArray(state, pos);  // 保存明文数据
        pos += BLOCKSIZE;  // 输出数据内存指针移位分组长度
        ct += BLOCKSIZE;   // 输入数据内存指针移位分组长度
        rk = aesKey.dK;    // 恢复rk指针到秘钥初始位置
    }
    return 0;
}
void printHex(uint8_t* ptr, int len,const char* tag) {
    printf("%s\ndata[%d]: ", tag, len);
    for (int i = 0; i < len; ++i) {
        printf("%.2X ", *ptr++);
    }
    printf("\n");
}

void hex2ch(uint8_t* ptr, int len){
    for(int i = 0;i<len;i++){
        printf("%c",*ptr++);
    }
} 

int main() {

    // case 1
    const uint8_t key[16] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
    uint8_t pt[16] = { 0x32, 0x43, 0xf6, 0xa8, 0x88, 0x5a, 0x30, 0x8d, 0x31, 0x31, 0x98, 0xa2, 0xe0, 0x37, 0x07, 0x34 };
    uint8_t ct[16] = { 0 };     // 外部申请输出数据内存,用于加密后的数据
    uint8_t plain[16] = { 0 };  // 外部申请输出数据内存,用于解密后的数据

    aesEncrypt(key, 16, pt, ct, 16); // 加密
    printHex(pt, 16, "plain data:"); // 打印初始明文数据
    printf("expect cipher:\n39 25 84 1D 02 DC 09 FB DC 11 85 97 19 6A 0B 32\n");  // 正常解密后的数据内容

    printHex(ct, 16, "after encryption:");  // 打印加密后的密文

    aesDecrypt(key, 16, ct, plain, 16);       // 解密
    printHex(plain, 16, "after decryption:"); // 打印解密后的明文数据

//    // case 2
//    // 16字节字符串形式秘钥
//    const uint8_t key2[] = "1234567890123456";
//    // 32字节长度字符串明文
//    const uint8_t* data = (uint8_t*)"abcdefghijklmnopqrstuvwxyz123456";
//    uint8_t ct2[32] = { 0 };    //外部申请输出数据内存,用于存放加密后数据
//    uint8_t plain2[32] = { 0 }; //外部申请输出数据内存,用于存放解密后数据
//    //加密32字节明文
//    aesEncrypt(key2, 16, data, ct2, 32);
//
//    printf("\nplain text:\n%s\n", data);
//    printf("expect ciphertext:\nfcad715bd73b5cb0488f840f3bad7889\n");
//    printHex(ct2, 32, "after encryption:");
//
//    // 解密32字节密文
//    aesDecrypt(key2, 16, ct2, plain2, 32);
//    // 打印16进制形式的解密后的明文
//    printHex(plain2, 32, "after decryption:");
//
//    // 因为加密前的数据为可见字符的字符串,打印解密后的明文字符,与加密前明文进行对比
//    printf("output plain text\n");
//    for (int i = 0; i < 32; ++i) {
//        printf("%c ", plain2[i]);
//    }

    return 0;
} 
// https://blog.csdn.net/gq1870554301/article/details/118737728

 

2、CBC

// 打造一个专门用于调试的 AES Ebc 加密环境 


#include <stdint.h>
#include <stdio.h>
#include <string.h>

typedef struct {
    uint32_t eK[44], dK[44];    // encKey, decKey
    int Nr; // 10 rounds
}AesKey;

#define BLOCKSIZE 16  //AES-128分组长度为16字节

// uint8_t y[4] -> uint32_t x
#define LOAD32H(x, y) \
  do { (x) = ((uint32_t)((y)[0] & 0xff)<<24) | ((uint32_t)((y)[1] & 0xff)<<16) | \
             ((uint32_t)((y)[2] & 0xff)<<8)  | ((uint32_t)((y)[3] & 0xff));} while(0)

// uint32_t x -> uint8_t y[4]
#define STORE32H(x, y) \
  do { (y)[0] = (uint8_t)(((x)>>24) & 0xff); (y)[1] = (uint8_t)(((x)>>16) & 0xff);   \
       (y)[2] = (uint8_t)(((x)>>8) & 0xff); (y)[3] = (uint8_t)((x) & 0xff); } while(0)

// 从uint32_t x中提取从低位开始的第n个字节
#define BYTE(x, n) (((x) >> (8 * (n))) & 0xff)

/* used for keyExpansion */
// 字节替换然后循环左移1位
#define MIX(x) (((S[BYTE(x, 2)] << 24) & 0xff000000) ^ ((S[BYTE(x, 1)] << 16) & 0xff0000) ^ \
                ((S[BYTE(x, 0)] << 8) & 0xff00) ^ (S[BYTE(x, 3)] & 0xff))

// uint32_t x循环左移n位
#define ROF32(x, n)  (((x) << (n)) | ((x) >> (32-(n))))
// uint32_t x循环右移n位
#define ROR32(x, n)  (((x) >> (n)) | ((x) << (32-(n))))

/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
// AES-128轮常量
static const uint32_t rcon[10] = {
        0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL, 0x10000000UL,
        0x20000000UL, 0x40000000UL, 0x80000000UL, 0x1B000000UL, 0x36000000UL
};
// S盒
unsigned char S[256] = {
        0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
        0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
        0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
        0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
        0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
        0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
        0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
        0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
        0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
        0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
        0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
        0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
        0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
        0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
        0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
        0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};

//逆S盒
unsigned char inv_S[256] = {
        0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
        0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
        0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
        0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
        0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
        0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
        0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
        0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
        0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
        0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
        0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
        0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
        0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
        0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
        0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
        0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};

/* copy in[16] to state[4][4] */
int loadStateArray(uint8_t(*state)[4], const uint8_t* in) {
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[j][i] = *in++;
        }
    }
    return 0;
}

/* copy state[4][4] to out[16] */
int storeStateArray(uint8_t(*state)[4], uint8_t* out) {
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            *out++ = state[j][i];
        }
    }
    return 0;
}
//秘钥扩展
int keyExpansion(const uint8_t* key, uint32_t keyLen, AesKey* aesKey) {

    if (NULL == key || NULL == aesKey) {
        printf("keyExpansion param is NULL\n");
        return -1;
    }

    if (keyLen != 16) {
        printf("keyExpansion keyLen = %d, Not support.\n", keyLen);
        return -1;
    }

    uint32_t* w = aesKey->eK;  //加密秘钥
    uint32_t* v = aesKey->dK;  //解密秘钥

    /* keyLen is 16 Bytes, generate uint32_t W[44]. */

    /* W[0-3] */
    for (int i = 0; i < 4; ++i) {
        LOAD32H(w[i], key + 4 * i);
    }

    /* W[4-43] */
    for (int i = 0; i < 10; ++i) {
        w[4] = w[0] ^ MIX(w[3]) ^ rcon[i];
        w[5] = w[1] ^ w[4];
        w[6] = w[2] ^ w[5];
        w[7] = w[3] ^ w[6];
        w += 4;
    }

    w = aesKey->eK + 44 - 4;
    //解密秘钥矩阵为加密秘钥矩阵的倒序,方便使用,把ek的11个矩阵倒序排列分配给dk作为解密秘钥
    //即dk[0-3]=ek[41-44], dk[4-7]=ek[37-40]... dk[41-44]=ek[0-3]
    for (int j = 0; j < 11; ++j) {

        for (int i = 0; i < 4; ++i) {
            v[i] = w[i];
        }
        w -= 4;
        v += 4;
    }

    return 0;
}

// 轮秘钥加
int addRoundKey(uint8_t(*state)[4], const uint32_t* key) {
    uint8_t k[4][4];

    /* i: row, j: col */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            k[i][j] = (uint8_t)BYTE(key[j], 3 - i);  /* 把 uint32 key[4] 先转换为矩阵 uint8 k[4][4] */
            state[i][j] ^= k[i][j];
        }
    }

    return 0;
}

//字节替换
int subBytes(uint8_t(*state)[4]) {
    /* i: row, j: col */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[i][j] = S[state[i][j]]; //直接使用原始字节作为S盒数据下标
        }
    }

    return 0;
}

//逆字节替换
int invSubBytes(uint8_t(*state)[4]) {
    /* i: row, j: col */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[i][j] = inv_S[state[i][j]];
        }
    }
    return 0;
}

//行移位
int shiftRows(uint8_t(*state)[4]) {
    uint32_t block[4] = { 0 };

    /* i: row */
    for (int i = 0; i < 4; ++i) {
        //便于行循环移位,先把一行4字节拼成uint_32结构,移位后再转成独立的4个字节uint8_t
        LOAD32H(block[i], state[i]);
        block[i] = ROF32(block[i], 8 * i);
        STORE32H(block[i], state[i]);
    }

    return 0;
}

//逆行移位
int invShiftRows(uint8_t(*state)[4]) {
    uint32_t block[4] = { 0 };

    /* i: row */
    for (int i = 0; i < 4; ++i) {
        LOAD32H(block[i], state[i]);
        block[i] = ROR32(block[i], 8 * i);
        STORE32H(block[i], state[i]);
    }

    return 0;
}

/* Galois Field (256) Multiplication of two Bytes */
// 两字节的伽罗华域乘法运算
uint8_t GMul(uint8_t u, uint8_t v) {
    uint8_t p = 0;

    for (int i = 0; i < 8; ++i) {
        if (u & 0x01) {    //
            p ^= v;
        }

        int flag = (v & 0x80);
        v <<= 1;
        if (flag) {
            v ^= 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
        }

        u >>= 1;
    }

    return p;
}

// 列混合
int mixColumns(uint8_t(*state)[4]) {
    uint8_t tmp[4][4];
    uint8_t M[4][4] = { {0x02, 0x03, 0x01, 0x01},
                       {0x01, 0x02, 0x03, 0x01},
                       {0x01, 0x01, 0x02, 0x03},
                       {0x03, 0x01, 0x01, 0x02} };

    /* copy state[4][4] to tmp[4][4] */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            tmp[i][j] = state[i][j];
        }
    }

    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {  //伽罗华域加法和乘法
        
        // debug : 
        // printf("0x%x = 0x%x ^ 0x%x ^ 0x%x ^ 0x%x\n",state[j][0],GMul(M[i][0], tmp[0][j]), GMul(M[i][1], tmp[1][j]),GMul(M[i][2], tmp[2][j]),GMul(M[i][3], tmp[3][j]));
        // getchar();
        
            state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
                ^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
        }
    }

    return 0;
}

// 逆列混合
int invMixColumns(uint8_t(*state)[4]) {
    uint8_t tmp[4][4];
    uint8_t M[4][4] = { {0x0E, 0x0B, 0x0D, 0x09},
                       {0x09, 0x0E, 0x0B, 0x0D},
                       {0x0D, 0x09, 0x0E, 0x0B},
                       {0x0B, 0x0D, 0x09, 0x0E} };  //使用列混合矩阵的逆矩阵

    /* copy state[4][4] to tmp[4][4] */
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            tmp[i][j] = state[i][j];
        }
    }

    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
                ^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
        }
    }

    return 0;
}

void debug_uint8(uint8_t(*state_debug)[4],char *tag,int start_debug = 1){        // 用于测试 unsigned __int8 类型的数组 
    printf("%s =>\n",tag);
    for(int i = 0;i<=3;i++){
        for(int j = 0;j<=3;j++){
            printf("0x%x ",state_debug[i][j]);
        }
        printf("\n");
    }
    printf("\n");
    if(start_debug){
        getchar();
    }
}

void debug_uint8_single(uint8_t* arr,char* tag,int start_debug = 1){
    printf("%s =>\n",tag);
    for(int i = 0;i<=15;i++){
        printf("0x%x ",arr[i]);
    }
    printf("\n");
    if(start_debug){
        getchar();
    }
}

// AES-128加密接口,输入key应为16字节长度,输入长度应该是16字节整倍数,
// 这样输出长度与输入长度相同,函数调用外部为输出数据分配内存
int aesEncrypt(const uint8_t* key, uint32_t keyLen,  uint8_t* pt, uint8_t* ct, uint32_t len,const uint8_t* iv) {
    // iv 与明文异或 
    int ans = 0;
    int iv_ans = 0;
    while(ans < len){
        
        while(iv_ans < 16)  pt[ans]  ^= iv[iv_ans++],ans++; 
        iv_ans = 0;
    }    
    
    
    AesKey aesKey;
    uint8_t* pos = ct;
    const uint32_t* rk = aesKey.eK;  //解密秘钥指针
    uint8_t out[BLOCKSIZE] = { 0 };
    uint8_t actualKey[16] = { 0 };
    uint8_t state[4][4] = { 0 };

    if (NULL == key || NULL == pt || NULL == ct) {
        printf("param err.\n");
        return -1;
    }

    if (keyLen > 16) {
        printf("keyLen must be 16.\n");
        return -1;
    }

    if (len % BLOCKSIZE) {
        printf("inLen is invalid.\n");
        return -1;
    }

    memcpy(actualKey, key, keyLen);
    keyExpansion(actualKey, 16, &aesKey);  // 秘钥扩展
//    debug_uint8_single(actualKey,"keyExpansion");
    // 使用ECB模式循环加密多个分组长度的数据
    for (int i = 0; i < len; i += BLOCKSIZE) {
        // 把16字节的明文转换为4x4状态矩阵来进行处理
        loadStateArray(state, pt);
//        debug_uint8(state,"loadStateArray");
        // 轮秘钥加
        addRoundKey(state, rk);
//        debug_uint8(state,"addRoundKey");
        for (int j = 1; j < 10; ++j) {
            rk += 4;
            subBytes(state);   // 字节替换
//            debug_uint8(state,"subBytes");
            
            shiftRows(state);  // 行移位
//            debug_uint8(state,"shiftRows");
            
            mixColumns(state); // 列混合
//            debug_uint8(state,"mixColumns");
            
            addRoundKey(state, rk); // 轮秘钥加
//            debug_uint8(state,"addRoundKey");
        }

        subBytes(state);    // 字节替换
//        debug_uint8(state,"subBytes");
        
        shiftRows(state);  // 行移位
//        debug_uint8(state,"shiftRows");
        
        // 此处不进行列混合
        addRoundKey(state, rk + 4); // 轮秘钥加
//        debug_uint8(state,"addRoundKey");
        
        // 把4x4状态矩阵转换为uint8_t一维数组输出保存
        storeStateArray(state, pos);
//        debug_uint8(state,"storeStateArray");

        pos += BLOCKSIZE;  // 加密数据内存指针移动到下一个分组
        pt += BLOCKSIZE;   // 明文数据指针移动到下一个分组
        rk = aesKey.eK;    // 恢复rk指针到秘钥初始位置
    }
    return 0;
}

// AES128解密, 参数要求同加密
int aesDecrypt(const uint8_t* key, uint32_t keyLen, const uint8_t* ct, uint8_t* pt, uint32_t len) {
    AesKey aesKey;
    uint8_t* pos = pt;
    const uint32_t* rk = aesKey.dK;  //解密秘钥指针
    uint8_t out[BLOCKSIZE] = { 0 };
    uint8_t actualKey[16] = { 0 };
    uint8_t state[4][4] = { 0 };

    if (NULL == key || NULL == ct || NULL == pt) {
        printf("param err.\n");
        return -1;
    }

    if (keyLen > 16) {
        printf("keyLen must be 16.\n");
        return -1;
    }

    if (len % BLOCKSIZE) {
        printf("inLen is invalid.\n");
        return -1;
    }

    memcpy(actualKey, key, keyLen);
    keyExpansion(actualKey, 16, &aesKey);  //秘钥扩展,同加密

    for (int i = 0; i < len; i += BLOCKSIZE) {
        // 把16字节的密文转换为4x4状态矩阵来进行处理
        loadStateArray(state, ct);
        // 轮秘钥加,同加密
        addRoundKey(state, rk);

        for (int j = 1; j < 10; ++j) {
            rk += 4;
            invShiftRows(state);    // 逆行移位
            invSubBytes(state);     // 逆字节替换,这两步顺序可以颠倒
            addRoundKey(state, rk); // 轮秘钥加,同加密
            invMixColumns(state);   // 逆列混合
        }

        invSubBytes(state);   // 逆字节替换
        invShiftRows(state);  // 逆行移位
        // 此处没有逆列混合
        addRoundKey(state, rk + 4);  // 轮秘钥加,同加密

        storeStateArray(state, pos);  // 保存明文数据
        pos += BLOCKSIZE;  // 输出数据内存指针移位分组长度
        ct += BLOCKSIZE;   // 输入数据内存指针移位分组长度
        rk = aesKey.dK;    // 恢复rk指针到秘钥初始位置
    }
    return 0;
}
void printHex(uint8_t* ptr, int len,const char* tag) {
    printf("%s\ndata[%d]: ", tag, len);
    for (int i = 0; i < len; ++i) {
        printf("%.2X ", *ptr++);
    }
    printf("\n");
}

void hex2ch(uint8_t* ptr, int len){
    for(int i = 0;i<len;i++){
        printf("%c",*ptr++);
    }
} 

int main() {

    // case 1
    const int LE = 48;         // 表示密文长度 
    const uint8_t key[16] = { 0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x61,0x62,0x63,0x64,0x65,0x66 };
    uint8_t iv[16] = {0x66,0x65,0x64,0x63,0x62,0x61,0x39,0x38,0x37,0x36,0x35,0x34,0x33,0x32,0x31,0x30};
    
    
    
    
    
    
    
    // encrypto
//    uint8_t Allpt[LE] = { 0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x61,0x62,0x63,0x64,0x65,0x66,0x31,0x31,0x32,0x32,0x33,0x33,0x34,0x34,0x35,0x35,0x36,0x36,0x37,0x37,0x38,0x38,0x71,0x71,0x77,0x77,0x65,0x65,0x72,0x72,0x74,0x74,0x79,0x79,0x75,0x75,0x69,0x69 };
//    
//    uint8_t ct[LE] = { 0 };     // 外部申请输出数据内存,用于加密后的数据
//    for(int i = 0;i< (sizeof Allpt) / 16;i++ ){
//        uint8_t pt[16] = {0};
//        memcpy(pt,Allpt+i*16,16);
//        aesEncrypt(key, 16, pt, ct+i*16, 16,iv); // 加密
//        memcpy(iv,ct+i*16,16);
//    }
//    printHex(Allpt, LE, "plain data:"); // 打印初始明文数据
//    printHex(ct, LE, "after encryption:");  // 打印加密后的密文
    
    
    

    
    
    
    //decrypto 
    uint8_t Allct[LE] = { 0x65,0x75,0xcf,0x6b,0x37,0x47,0x9d,0x92,0x15,0x33,0x7f,0xf9,0x76,0x7f,0xe7,0x86,0x5d,0x17,0x88,0xee,0xe2,0xcb,0x59,0x81,0x74,0xa1,0x36,0x16,0x99,0x46,0x48,0xd8,0x63,0x8b,0xf9,0xad,0x2d,0x9f,0xe7,0xc2,0x86,0x24,0x44,0x82,0xd4,0x1f,0x3b,0xdf };     // 外部申请输出数据内存,用于加密后的数据
    uint8_t Allplain[LE] = { 0 };  // 外部申请输出数据内存,用于解密后的数据
    
    for(int i = 0;i < LE / 16;i++ ){
        uint8_t ct[16] = {0};
        uint8_t plain[16] = {0};
        memcpy(ct,Allct+i*16,16);
        
        
        // 加密 
        aesDecrypt(key, 16, ct, plain, 16); 
        for(int k = 0;k<16;k++) plain[k] ^= iv[k];
        
        // 存储一下 
        memcpy(Allplain+16*i,plain,16);
        
        // 更新 iv  // iv的值即为密文 
        for(int k = 0;k<16;k++) iv[k] = ct[k];
        
    }    

    printHex(Allplain, LE, "after decryption:"); // 打印解密后的明文数据
    hex2ch (Allplain,LE);

    return 0;
} 
// https://blog.csdn.net/gq1870554301/article/details/118737728

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM