论文中画带标准差阴影的曲线图:seaborn.lineplot()(含smoothing)


# 导入库函数 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False

# 平滑处理,类似tensorboard的smoothing函数。 def smooth(read_path, save_path, file_name, x='timestep', y='reward', weight=0.75): data = pd.read_csv(read_path + file_name) scalar = data[y].values last = scalar[0] smoothed = [] for point in scalar: smoothed_val = last * weight + (1 - weight) * point smoothed.append(smoothed_val) last = smoothed_val save = pd.DataFrame({x: data[x].values, y: smoothed}) save.to_csv(save_path + 'smooth_'+ file_name)

# 平滑预处理原始reward数据 smooth(read_path='./BipedalWalker-v3/', save_path='./BipedalWalker-v3/', file_name='PPO_BipedalWalker-v3_log_210.csv') smooth(read_path='./BipedalWalker-v3/', save_path='./BipedalWalker-v3/', file_name='PPO_BipedalWalker-v3_log_310.csv') smooth(read_path='./BipedalWalker-v3/', save_path='./BipedalWalker-v3/', file_name='PPO_BipedalWalker-v3_log_410.csv')
# 读取平滑后的数据 df1 = pd.read_csv('./BipedalWalker-v3/smooth_PPO_BipedalWalker-v3_log_210.csv') #[1100: 1200] df2 = pd.read_csv('./BipedalWalker-v3/smooth_PPO_BipedalWalker-v3_log_310.csv') #[1100: 1200] df3 = pd.read_csv('./BipedalWalker-v3/smooth_PPO_BipedalWalker-v3_log_410.csv') #[1100: 1200] 
# 拼接到一起 df = df1.append(df2.append(df3))
# 重新排列索引 df.index = range(len(df)) print(df)
# 设置图片大小 plt.figure(figsize=(15, 10)) 
# 画图 sns.lineplot(data=df, x="timestep", y="reward")





免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM