直角坐标系中点绕原点旋转的坐标变化公式


A点绕坐标轴逆旋转b到B点

设A点坐标\((x,y)\),B点坐标\((x^{\prime},y^{\prime})\)
\(\begin{align*} x =\ &rcos\alpha\\ y =\ &rsin\alpha\\ x^{\prime} =\ &rcos(\alpha+\beta)\ =\ rcos\alpha cos\beta - rsin\alpha sin\beta\ =\ xcos\beta-ysin\beta\\ y^{\prime} =\ &rsin(\alpha+\beta)\ =\ rsin\alpha cos\beta + rsin\beta cos\alpha\ =\ xsin\beta+ycos\beta \end{align*}\)
\(\left[ \begin{array}{l} x^{\prime}\\ y^{\prime} \end{array} \right]=\left[\begin{array}{lc} cos\beta&-sin\beta\\ sin\beta&cos\beta \end{array} \right]\cdot \left[ \begin{array}{l} x\\ y \end{array} \right] \)

同理可推出顺时针旋转的公式(把\(\beta\)变成\(-\beta\)即可)
\(\left[ \begin{array}{l} x^{\prime}\\ y^{\prime} \end{array} \right]=\left[\begin{array}{cl} cos\beta&sin\beta\\ -sin\beta&cos\beta \end{array} \right]\cdot \left[ \begin{array}{l} x\\ y \end{array} \right] \)


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM