在前面的章节关于u-boot的源码,以及u-boot的移植这一块我们介绍完了。接下来,我们应该开始进入第二个阶段,linux内核移植,以及驱动开发。
但是在这之前,我们遗漏了u-boot中的一个重要环节没有介绍,就是u-boot如何执行bootm命令,如何实现linux内核启动。
我们在Mini440之uboot移植之源码分析命令解析(五) 介绍过如果配置了CONFIG_BOOTCOMMAND宏:
#define CONFIG_BOOTCOMMAND "nand read 0x30000000 kernel; bootm 0x30000000" //bootcmd
那么在执行autoboot_command函数的时候,将会执行bootcmd中保存的命令。
- nand read 0x30000000 kernel:这里将Nand Flash kernel分区的内核镜像加载到地址0x30000000;
- bootm 0x3000000:启动linux内核;bootm这个命令用于启动一个内核镜像,这个镜像就是uImage文件,它会从uImage镜像文件的头部取得一些信息,这些信息包括:CPU架构、操作系统类型、文件类型、压缩方式、加载地址、运行的入口地址等;
一、内核镜像
前面我们说了u-boot启动linux内核,从Nand Flash内核分区中加载uImage镜像,那么什么是uImage镜像呢?说到这个我们就不得不聊一聊内核镜像的几种文件格式了。
1.1 介绍
linux内核编译之后一般会生成一下两个文件,一个是Image,一个是zImage,其中Image为内核镜像文件(可以直接在芯片上运行原生二进制文件),而zImage为内核的镜像压缩文件(但它不仅爱是一个压缩文件,在文件的开头部分内嵌有gzip解压缩代码)。
但是这两种镜像的格式并没有办法提供给u-boot的足够的信息来进行load、jump或者验证操作等等。因此,u-boot提供了mkimage工具,来将zImage制作为u-boot可以识别的格式,将生成的文件称之uImage。
需要注意的是:这里并不是说u-boot一定不支持zImage镜像文件的启动,一般可以通过配置CONFIG_ZIMAGE_BOOT使u-boot支持zImage启动。
1.1.1 Legacy uImage
Legacy uImage它是在zImage之前加上了一个长度为64字节的头,说明这个内核的CPU架构、操作系统类型、文件类型、压缩方式、加载地址、运行的入口地址等。
1.1.2 FIT uImage
FIT uImage是在Legacy uImage的基础上,为了满足Linux Flattened Device Tree(FDT)的标准,而重新改进和定义出来的一种镜像文件格式;它一般将kernel、fdt、ramdisk等等镜像打包到一个itb镜像文件中;u-boot只要获得了这个镜像文件,就可以得到kernel、fdt、ramdisk等等镜像的具体信息和内容。
1.1.3 Image、zImage、uImage发展历程
为什么会出现 Legacy uImage ,然后又出现 FIT uImage ?
最开始出现的是Image,就一个普通的内核镜像。然后为了节省空间,有了 zImage,进行了压缩可以节省空间。
u-boot启动一个Image或者 zImage,还必须要给它传递一些参数;
- 镜像文件的类型,如kernel image、dtb文件、ramdisk image等等?
- 镜像文件需要放在内存的的哪个位置(加载地址)?
- 镜像文件需要从内存哪个位置开始执行(入口地址)?
- 镜像文件是否有压缩?
- 镜像文件是否有一些完整性校验的信息(如CRC)?
这种方式的不足就在于,镜像本身没有带有这些参数的,用工具制作完镜像后,还需要另外再向u-boot提供这些参数,才能正常启动(就是比较麻烦)。
如果可以把这些参数,在制作镜像的时候就一起弄到镜像里面,然后u-boot一读取镜像,就马上可以知道这些参数了。不需要在制作好镜像之后再另外告诉u-boot这些参数。这种带有以上参数的镜像格式就是 Legacy uImage。
最后一个 FIT uImage ,其主要目的是为了支持基于device tree的unify kernel。
1.2 Legacy uImage
1.2.1 配置
使能需要打开的宏:
CONFIG_IMAGE_FORMAT_LEGACY=y
注意,这个宏在自动生成的autoconf.mk中会自动配置,不需要额外配置。
1.2.2 制作
编译完u-boot之后,使用u-boot目录下tools/mkimage工具来制作uImage。命令如下:
mkimage -A arm -O linux -C none -T kernel -a 0x20008000 -e 0x20008040 -n Linux_Image -d zImage uImage 各个参数意义如下 Usage: mkimage -l image -l ==> list image header information mkimage [-x] -A arch -O os -T type -C comp -a addr -e ep -n name -d data_file[:data_file...] image -A ==> set architecture to 'arch' // 架构 -O ==> set operating system to 'os' // 操作系统 -T ==> set image type to 'type' // 镜像类型 -C ==> set compression type 'comp' // 压缩类型 -a ==> set load address to 'addr' (hex) // 加载地址 -e ==> set entry point to 'ep' (hex) // 入口地址 -n ==> set image name to 'name' // 镜像名称,注意不能超过32B -d ==> use image data from 'datafile' // 输入文件 -x ==> set XIP (execute in place)
1.2.3 使用
将生成的Legacy uImage下载到内存中,使用bootm <download addr>命令启动kernel中。
但是注意,如果使用Legacy uImage后面还需要根据实际情况决定是否需要传入ramdisk以及dtb的在内存中的地址,否则可能会导致bootm失败。
格式如下:
bootm <Legacy uImage addr> <ramdisk addr> <dtb addr>
1.3 FIT uImage
1.3.1 FIT介绍
FIT是flattened image tree的简称,它采用了device tree source filse(DTS)的语法,生成的image文件也和dtb文件类似(称做itb)。
其通过一定语法和格式将一些需要使用到的镜像(例如kernel、dtb以及文件系统)组合到一起生成一个image file。其生成步骤如下图所示:
其中image source file(.its)和device tree source file(.dts)类似,负责描述要生成的image file的信息。mkimage和dtc工具,可以将.its文件以及对应的image data file,打包成一个image file。
这里我们有必要对涉及到的这几类文件进行一个总结:
- its文件 :image source file,类似于dts文件,负责描述要声称的image的的信息。需要自行进行构造;
- itb文件 :最终得到的image文件,类似于dtb文件,也就是uboot可以直接对其进行识别和解析的FIT uImage;
- mkimage :mkimage则负责dtc的角色,用于通过解析its文件、获取对应的镜像,最终生成一个u-boot可以直接进行识别和解析的itb文件;
- image data file :实际使用到的镜像文件;
mkimage将its文件以及对应的image data file,打包成一个itb文件,也就是u-boot可以识别的image file(FIT uImage)。我们将这个文件下载到么内存中,使用bootm命令就可以执行了。
1.3.2 配置
使能需要打开的宏:
CONFIG_FIT=y
1.3.3 创建its文件
因为mkimage是根据its文件中的描述来打包镜像生成itb文件(FIT uImage),所以首先需要制作一个its文件,在its文件中描述需要被打包的镜像,主要是kernel镜像,dtb文件,ramdisk镜像。
关于its文件的语法,可以参考这篇博客FIT介绍。简单的例子如下:

/* * U-Boot uImage source file for "X project" */ /dts-v1/; / { description = "U-Boot uImage source file for X project"; #address-cells = <1>; images { kernel@tiny210 { description = "Unify(TODO) Linux kernel for project-x"; data = /incbin/("/home/hlos/code/xys/temp/project-x/build/out/linux/arch/arm/boot/zImage"); type = "kernel"; arch = "arm"; os = "linux"; compression = "none"; load = <0x20008000>; entry = <0x20008000>; }; fdt@tiny210 { description = "Flattened Device Tree blob for project-x"; data = /incbin/("/home/hlos/code/xys/temp/project-x/build/out/linux/arch/arm/boot/dts/s5pv210-tiny210.dtb"); type = "flat_dt"; arch = "arm"; compression = "none"; }; ramdisk@tiny210 { description = "Ramdisk for project-x"; data = /incbin/("/home/hlos/code/xys/temp/project-x/build/out/rootfs/initramfs.gz"); type = "ramdisk"; arch = "arm"; os = "linux"; compression = "gzip"; }; }; configurations { default = "conf@tiny210"; conf@tiny210 { description = "Boot Linux kernel with FDT blob"; kernel = "kernel@tiny210"; fdt = "fdt@tiny210"; ramdisk = "ramdisk@tiny210"; }; }; };
注意,可以有多个kernel节点或者fdt节点等等,兼容性更强。同时,可以有多种configurations,来对kernel、fdt、ramdisk来进行组合,使FIT-uImage可以兼容于多种板子,而无需重新进行编译烧写。
1.3.4 生成FIT uImage
生成的命令相对Legacy uImage较为简单,因为信息都在its文件里面描述了:
${UBOOT_OUT_DIR}/tools/mkimage -f ${UIMAGE_ITS_FILE} ${UIMAGE_ITB_FILE}
其中 -f 指定需要编译的source文件,并在后面指定需要生成的image文件(一般以.itb为后缀,例如u-boot.itb)。
1.3.5 使用
将生成的FIT uImage下载到内存某个地址,使用bootm <FIT uImage addr>命令启动。
u-boot会自动解析出FIT uImage中,kernel、ramdisk、dtb的信息,使用起来相当方便。
二、linux内核启动
2.1 autoboot_command
autoboot_command函数定义在common/autoboot.c文件中:
void autoboot_command(const char *s) { debug("### main_loop: bootcmd=\"%s\"\n", s ? s : "<UNDEFINED>"); if (stored_bootdelay != -1 && s && !abortboot(stored_bootdelay)) { run_command_list(s, -1, 0); } }
如果在u-boot启动倒计时结束之前,没有按下任何键,将会执行那么将执行run_command_list,此函数会执行参数s指定的一系列命令,也就是bootcmd中配置中的命令,bootcmd中保存着默认的启动命令。
在默认环境变量default_environment中定义有:
#ifdef CONFIG_BOOTCOMMAND "bootcmd=" CONFIG_BOOTCOMMAND "\0" #endif
2.2 do_bootm
由于要执行bootm命令,所以我们需要打开与bootm命令相关的文件进行分析,bootm命令定义在cmc/bootm.c文件中:
U_BOOT_CMD( bootm, CONFIG_SYS_MAXARGS, 1, do_bootm, "boot application image from memory", bootm_help_text );
找到对应的do_bootm函数,去除无用的代码:
/*******************************************************************/ /* bootm - boot application image from image in memory */ /*******************************************************************/ int do_bootm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { /* determine if we have a sub command */ argc--; argv++; if (argc > 0) { char *endp; simple_strtoul(argv[0], &endp, 16); /* endp pointing to NULL means that argv[0] was just a * valid number, pass it along to the normal bootm processing * * If endp is ':' or '#' assume a FIT identifier so pass * along for normal processing. * * Right now we assume the first arg should never be '-' */ if ((*endp != 0) && (*endp != ':') && (*endp != '#')) return do_bootm_subcommand(cmdtp, flag, argc, argv); }
// 到这里参数中的bootm参数会被去掉 return do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_START | BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER | BOOTM_STATE_LOADOS | BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO, &images, 1); }
当执行bootm 0x30000000,函数入参:第一个参数是bootm命令结构体,flag是命令标志位,argv[0]='"bootm"、argv[1]="0x3000000",argc=2。
这里进入函数之后argc=1,argv[0]=0x30000000。
bootm的核心是do_bootm_states,以全局变量bootm_headers_t images作为do_bootm_states的参数,该变量在cmd/bootm.c文件中声明。
bootm_headers_t images; /* pointers to os/initrd/fdt images */
bootm会根据参数以及参数指向的镜像来填充这个结构体里面的成员。 最终再使用这个结构体里面的信息来填充kernel启动信息并且到跳转到kernel中,下面详细说明这个函数。
三、do_bootm_states函数
3.1 函数声明
我们先来看一下这个函数的声明:
int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], int states, bootm_headers_t *images, int boot_progress);
3.2 相关结构体
3.2.1 bootm_headers_t
参数bootm_headers_t *images是一个复杂的数据结构,bootm_headers_t定义在include/image.h文件中:
/* * Legacy and FIT format headers used by do_bootm() and do_bootm_<os>() * routines. */ typedef struct bootm_headers { /* * Legacy os image header, if it is a multi component image * then boot_get_ramdisk() and get_fdt() will attempt to get * data from second and third component accordingly. */ image_header_t *legacy_hdr_os; /* image header pointer */ image_header_t legacy_hdr_os_copy; /* header copy */ ulong legacy_hdr_valid; #if IMAGE_ENABLE_FIT const char *fit_uname_cfg; /* configuration node unit name */ void *fit_hdr_os; /* os FIT image header */ const char *fit_uname_os; /* os subimage node unit name */ int fit_noffset_os; /* os subimage node offset */ void *fit_hdr_rd; /* init ramdisk FIT image header */ const char *fit_uname_rd; /* init ramdisk subimage node unit name */ int fit_noffset_rd; /* init ramdisk subimage node offset */ void *fit_hdr_fdt; /* FDT blob FIT image header */ const char *fit_uname_fdt; /* FDT blob subimage node unit name */ int fit_noffset_fdt;/* FDT blob subimage node offset */ void *fit_hdr_setup; /* x86 setup FIT image header */ const char *fit_uname_setup; /* x86 setup subimage node name */ int fit_noffset_setup;/* x86 setup subimage node offset */ #endif #ifndef USE_HOSTCC image_info_t os; /* os image info */ ulong ep; /* entry point of OS */ ulong rd_start, rd_end;/* ramdisk start/end */ char *ft_addr; /* flat dev tree address */ ulong ft_len; /* length of flat device tree */ ulong initrd_start; ulong initrd_end; ulong cmdline_start; ulong cmdline_end; bd_t *kbd; #endif int verify; /* getenv("verify")[0] != 'n' */ #define BOOTM_STATE_START (0x00000001) #define BOOTM_STATE_FINDOS (0x00000002) #define BOOTM_STATE_FINDOTHER (0x00000004) #define BOOTM_STATE_LOADOS (0x00000008) #define BOOTM_STATE_RAMDISK (0x00000010) #define BOOTM_STATE_FDT (0x00000020) #define BOOTM_STATE_OS_CMDLINE (0x00000040) #define BOOTM_STATE_OS_BD_T (0x00000080) #define BOOTM_STATE_OS_PREP (0x00000100) #define BOOTM_STATE_OS_FAKE_GO (0x00000200) /* 'Almost' run the OS */ #define BOOTM_STATE_OS_GO (0x00000400) int state; #ifdef CONFIG_LMB struct lmb lmb; /* for memory mgmt */ #endif } bootm_headers_t;
bootm_headers_t用于Legacy或设备树(FDT)方式镜像的启动,其中包括了os/initrd/fdt images的信息。我们这里大概介绍一下和这个结构体的成员变量:
- legacy_hdr_os:Legacy uImage的镜像头;对应就是Legacy uImage加载到内存的起始地址;
- legacy_hdr_os_copy:Legacy uImage的镜像头备份;
- legacy_hdr_valid:用于表示Legacy uImage的头部指针是否可用,也就是这是否是一个Legacy uImage;
- fit_uname_cfg:配置节点名;
- fit_hdr_os:FIT uImage中kernel镜像头;对应就是FIT uImage加载到内存的的起始地址;
- fit_uname_os:FIT uImage中kernel的节点名称;比如我们之前案例中的kernel@tiny210;
- fit_noffset_os:FIT uImage中kernel的节点偏移,直接代表了kernel节点;也就是说通过fit_hdr_os、fit_noffset_os就可以获取到itb文件中描述的kernel节点的信息;
- fit_hdr_rd:FIT uImage中ramdisk的镜像头;
- fit_uname_rd:FIT uImage中ramdisk的节点名;
- fit_noffset_rd:FIT uImage中ramdisk的节点偏移;
- fit_hdr_fdt:FIT uImage中FDT的镜像头;
- fit_uname_fdt:FIT uImage中FDT的节点名;
- fit_noffset_fdt:FIT uImage中FDT的节点偏移;
- os:操作系统信息的结构体,包含os.load、os.type、os.os等字段信息;
- ep:操作系统的入口地址;
- rd_start:ramdisk在内存上的起始地址;
- rd_end:ramdisk在内存上的结束地址
- ft_addr:fdt在内存上的地址;
- ft_len:fdt在内存上的长度;
- verify:是否需要验证;
- state:状态标识,用于标识对应的bootm需要做什么操作;
其中 legacy_hdr_os是image_header_t类型。这个结构尤为重要,下面来介绍。
3.2.2 image_header_t
u-boot使用image_header_t来表示Legacy uImage的头部信息,定义在include/image.h文件:
/* * Legacy format image header, * all data in network byte order (aka natural aka bigendian). */ typedef struct image_header { __be32 ih_magic; /* Image Header Magic Number */ __be32 ih_hcrc; /* Image Header CRC Checksum */ __be32 ih_time; /* Image Creation Timestamp */ __be32 ih_size; /* Image Data Size */ __be32 ih_load; /* Data Load Address */ __be32 ih_ep; /* Entry Point Address */ __be32 ih_dcrc; /* Image Data CRC Checksum */ uint8_t ih_os; /* Operating System */ uint8_t ih_arch; /* CPU architecture */ uint8_t ih_type; /* Image Type */ uint8_t ih_comp; /* Compression Type */ uint8_t ih_name[IH_NMLEN]; /* Image Name */ } image_header_t;
比较重要的成员有:
- ih_magic:镜像的魔数,用来校验是不是一个Legacy uImage;为0x27051956则表示是一个Legacy uImage;
- ih_size:数据镜像长度,和zImage长度一样,不包含头部信息;
- ih_load:镜像的加载地址;和mkimage使用的参数一致;zImage解压之后得到Image会加载到这个地址上;
- ih_ep:镜像的入口地址;和mkimage使用的参数一致;内核启动的入口地址;
- ih_os:镜像的系统;
- ih_type:镜像的类型;
3.2.3 状态说明
do_bootm_states的state参数是一大堆的标志宏,这些标志宏就是u-boot启动时需要的阶段,每个阶段都有一个宏来表示。
#define BOOTM_STATE_START (0x00000001) #define BOOTM_STATE_FINDOS (0x00000002) #define BOOTM_STATE_FINDOTHER (0x00000004) #define BOOTM_STATE_LOADOS (0x00000008) #define BOOTM_STATE_RAMDISK (0x00000010) #define BOOTM_STATE_FDT (0x00000020) #define BOOTM_STATE_OS_CMDLINE (0x00000040) #define BOOTM_STATE_OS_BD_T (0x00000080) #define BOOTM_STATE_OS_PREP (0x00000100) #define BOOTM_STATE_OS_FAKE_GO (0x00000200) /* 'Almost' run the OS */ #define BOOTM_STATE_OS_GO (0x00000400)
- BOOTM_STATE_START :开始执行bootm的一些准备动作;
- BOOTM_STATE_FINDOS :查找内核镜像,需要注意的是内核镜像有多种,比如Image、zImage、uImage等,像Image内核镜像加载到内存,就可以直接运行,而像zImage这种是压缩之后的内核镜像文件,它在头部包含了解压缩代码,而uImage在zImage之前又加了0x40的头信息,而u-boot引导的内核镜像文件一般为zImage(bootz命令)和uImage(bootm命令);
- BOOTM_STATE_FINDOTHER :查找内核镜像外的其它镜像,比如FDT、ramdisk等;
- BOOTM_STATE_LOADOS :查找到内核镜像后,解析加载的内核镜像的头信息,根据内核镜像的格式是zImage、uImage还是设备树,有不同的处理逻辑,比uImage需要解压,最终会将vmlinux加载到images.os.load指向的内存空间;
- BOOTM_STATE_RAMDISK :操作ramdisk;
- BOOTM_STATE_FDT :操作FDT;
- BOOTM_STATE_OS_CMDLINE :操作commandline;
- BOOTM_STATE_OS_BD_T :跳转到内核前的准备动作;
- BOOTM_STATE_OS_PREP :执行跳转前的准备动作 ;
- BOOTM_STATE_OS_FAKE_GO :伪跳转,一般都能直接跳转到kernel中去
- BOOTM_STATE_OS_GO :设置启动参数,跳转到kernel所在的地址上 ;
上面划掉的可以先忽略掉。do_bootm_states根据states来判断要执行的操作。在这些流程中,起传递作用的是bootm_headers_t images这个数据结构,有些流程是解析内核镜像,往这个结构体里写数据。 而跳转的时候,则需要使用到这个结构体里面的数据。
3.3 do_bootm_states函数
do_bootm_states函数定义在cmd/bootm.c文件:

/** * Execute selected states of the bootm command. * * Note the arguments to this state must be the first argument, Any 'bootm' * or sub-command arguments must have already been taken. * * Note that if states contains more than one flag it MUST contain * BOOTM_STATE_START, since this handles and consumes the command line args. * * Also note that aside from boot_os_fn functions and bootm_load_os no other * functions we store the return value of in 'ret' may use a negative return * value, without special handling. * * @param cmdtp Pointer to bootm command table entry * @param flag Command flags (CMD_FLAG_...) * @param argc Number of subcommand arguments (0 = no arguments) * @param argv Arguments * @param states Mask containing states to run (BOOTM_STATE_...) * @param images Image header information * @param boot_progress 1 to show boot progress, 0 to not do this * @return 0 if ok, something else on error. Some errors will cause this * function to perform a reboot! If states contains BOOTM_STATE_OS_GO * then the intent is to boot an OS, so this function will not return * unless the image type is standalone. */ int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], int states, bootm_headers_t *images, int boot_progress) { boot_os_fn *boot_fn; ulong iflag = 0; int ret = 0, need_boot_fn; images->state |= states; /* * Work through the states and see how far we get. We stop on * any error. */ if (states & BOOTM_STATE_START) ret = bootm_start(cmdtp, flag, argc, argv); if (!ret && (states & BOOTM_STATE_FINDOS)) ret = bootm_find_os(cmdtp, flag, argc, argv); if (!ret && (states & BOOTM_STATE_FINDOTHER)) { ret = bootm_find_other(cmdtp, flag, argc, argv); argc = 0; /* consume the args */ } /* Load the OS */ if (!ret && (states & BOOTM_STATE_LOADOS)) { ulong load_end; iflag = bootm_disable_interrupts(); ret = bootm_load_os(images, &load_end, 0); if (ret == 0) lmb_reserve(&images->lmb, images->os.load, (load_end - images->os.load)); else if (ret && ret != BOOTM_ERR_OVERLAP) goto err; else if (ret == BOOTM_ERR_OVERLAP) ret = 0; #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY) if (images->os.os == IH_OS_LINUX) fixup_silent_linux(); #endif } /* Relocate the ramdisk */ #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH // 不执行 if (!ret && (states & BOOTM_STATE_RAMDISK)) { ulong rd_len = images->rd_end - images->rd_start; ret = boot_ramdisk_high(&images->lmb, images->rd_start, rd_len, &images->initrd_start, &images->initrd_end); if (!ret) { setenv_hex("initrd_start", images->initrd_start); setenv_hex("initrd_end", images->initrd_end); } } #endif #if IMAGE_ENABLE_OF_LIBFDT && defined(CONFIG_LMB) // 不执行 if (!ret && (states & BOOTM_STATE_FDT)) { boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr); ret = boot_relocate_fdt(&images->lmb, &images->ft_addr, &images->ft_len); } #endif /* From now on, we need the OS boot function */ if (ret) return ret; boot_fn = bootm_os_get_boot_func(images->os.os); need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE | BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO); if (boot_fn == NULL && need_boot_fn) { if (iflag) enable_interrupts(); printf("ERROR: booting os '%s' (%d) is not supported\n", genimg_get_os_name(images->os.os), images->os.os); bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS); return 1; } /* Call various other states that are not generally used */ if (!ret && (states & BOOTM_STATE_OS_CMDLINE)) ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images); if (!ret && (states & BOOTM_STATE_OS_BD_T)) ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images); if (!ret && (states & BOOTM_STATE_OS_PREP)) ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images); #ifdef CONFIG_TRACE // 不执行 /* Pretend to run the OS, then run a user command */ if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) { char *cmd_list = getenv("fakegocmd"); ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO, images, boot_fn); if (!ret && cmd_list) ret = run_command_list(cmd_list, -1, flag); } #endif /* Check for unsupported subcommand. */ if (ret) { puts("subcommand not supported\n"); return ret; } /* Now run the OS! We hope this doesn't return */ if (!ret && (states & BOOTM_STATE_OS_GO)) ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO, images, boot_fn); /* Deal with any fallout */ err: if (iflag) enable_interrupts(); if (ret == BOOTM_ERR_UNIMPLEMENTED) bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL); else if (ret == BOOTM_ERR_RESET) do_reset(cmdtp, flag, argc, argv); return ret; }
代码具体执行流程:
- 初始化images->state |= states;
- states跟宏BOOTM_STATE_START进行与操作,通过执行bootm_start;
- states跟宏BOOTM_STATE_FINDOS进行与操作,通过执行bootm_find_os;
- states跟宏BOOTM_STATE_FINDOTHER进行与操作,通过执行bootm_find_other;
- states跟宏BOOTM_STATE_LOADOS进行与操作,通过关闭中断,执行bootm_load_os;
- states跟宏BOOTM_STATE_OS_PREP进行与操作,通过执行boot_fn;
- states跟宏BOOTM_STATE_OS_GO进行与操作,通过执行boot_selected_os;
boot_selected_os,这函数里面就执行do_bootm_linux跳转到我们的内核去运行了,如无意外,到了这里一般情况下就不返回了。
我们根据状态参数,绘制出这个函数的执行流程:
3.3.1 bootm_start
boot_start函数定义在common/bootm.c文件:
static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { memset((void *)&images, 0, sizeof(images)); images.verify = getenv_yesno("verify"); boot_start_lmb(&images); bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start"); images.state = BOOTM_STATE_START; return 0; }
代码具体执行流程:
- 清空images结构体;
- 获取环境遍历verify,并赋值给images.verify;
- 执行boot_start_lmb()初始化images.lmb;
- 执行bootstage_mark_name,记录启动阶段的名字;
- 设置images.state = BOOTM_STATE_START;
3.3.2 bootm_find_os
bootm_find_os函数用于获取操作系统相关的一些信息,例如类型、压缩方式,加载地址、入口地址等。
定义在common/bootm.c:
static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { const void *os_hdr; bool ep_found = false; int ret; /* get kernel image header, start address and length */ os_hdr = boot_get_kernel(cmdtp, flag, argc, argv, // 1. 获取到Legacy uImage的头部,并将其指针返回给os_hdr &images, &images.os.image_start, &images.os.image_len); if (images.os.image_len == 0) { puts("ERROR: can't get kernel image!\n"); return 1; } /* get image parameters */ switch (genimg_get_format(os_hdr)) { // 2. 根据不同的内核镜像格式,如Android、Legacy uImage、FIT uImage,获取操作系统的信息 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) case IMAGE_FORMAT_LEGACY: // Legacy uImage images.os.type = image_get_type(os_hdr); // 从头部image_header中获得镜像类型并存储到images.os.type中 images.os.comp = image_get_comp(os_hdr); // 从头部image_header中获得压缩类型类型并存储到images.os.comp中 images.os.os = image_get_os(os_hdr); // 从头部image_header中获得操作系统类型并存储到images.os.os中 images.os.end = image_get_image_end(os_hdr); // 当前镜像的尾地址 images.os.load = image_get_load(os_hdr); // 从头部image_header中获得加载地址并存储到images.os.load中 images.os.arch = image_get_arch(os_hdr); // 从头部image_header中获得cpu体系结构类型并存储到images.os.arch中 break; #endif #if IMAGE_ENABLE_FIT case IMAGE_FORMAT_FIT: // FIT uImage if (fit_image_get_type(images.fit_hdr_os, // 获取itb文件中kernel节点中的"type"属性 images.fit_noffset_os, &images.os.type)) { puts("Can't get image type!\n"); bootstage_error(BOOTSTAGE_ID_FIT_TYPE); return 1; } if (fit_image_get_comp(images.fit_hdr_os, // 获取itb文件中kernel节点中的"comp"属性 images.fit_noffset_os, &images.os.comp)) { puts("Can't get image compression!\n"); bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION); return 1; } if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os, // 获取itb文件中kernel节点中的"os"属性 &images.os.os)) { puts("Can't get image OS!\n"); bootstage_error(BOOTSTAGE_ID_FIT_OS); return 1; } if (fit_image_get_arch(images.fit_hdr_os, // 获取itb文件中kernel节点中的"arch"属性 images.fit_noffset_os, &images.os.arch)) { puts("Can't get image ARCH!\n"); return 1; } images.os.end = fit_get_end(images.fit_hdr_os); if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os, // 获取itb文件中kernel节点中的"load"属性 &images.os.load)) { puts("Can't get image load address!\n"); bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR); return 1; } break; #endif #ifdef CONFIG_ANDROID_BOOT_IMAGE case IMAGE_FORMAT_ANDROID: // Android images.os.type = IH_TYPE_KERNEL; images.os.comp = IH_COMP_NONE; images.os.os = IH_OS_LINUX; images.os.end = android_image_get_end(os_hdr); images.os.load = android_image_get_kload(os_hdr); images.ep = images.os.load; ep_found = true; break; #endif default: puts("ERROR: unknown image format type!\n"); return 1; } /* If we have a valid setup.bin, we will use that for entry (x86) */ if (images.os.arch == IH_ARCH_I386 || images.os.arch == IH_ARCH_X86_64) { ulong len; ret = boot_get_setup(&images, IH_ARCH_I386, &images.ep, &len); if (ret < 0 && ret != -ENOENT) { puts("Could not find a valid setup.bin for x86\n"); return 1; } /* Kernel entry point is the setup.bin */ } else if (images.legacy_hdr_valid) { // Legacy uImage类型 images.ep = image_get_ep(&images.legacy_hdr_os_copy); // 从头部image_header中获得镜像的入口地址并存储到images.ep中 #if IMAGE_ENABLE_FIT } else if (images.fit_uname_os) { // FIT uImage类型 int ret; ret = fit_image_get_entry(images.fit_hdr_os, // 获取itb文件中kernel节点中的"entry"属性 images.fit_noffset_os, &images.ep); if (ret) { puts("Can't get entry point property!\n"); return 1; } #endif } else if (!ep_found) { puts("Could not find kernel entry point!\n"); return 1; } if (images.os.type == IH_TYPE_KERNEL_NOLOAD) { images.os.load = images.os.image_start; images.ep += images.os.load; } images.os.start = map_to_sysmem(os_hdr); return 0; }
假设我们使用的内核镜像格式为Legacy uImage,那么代码具体执行流程:
(1) boot_get_kernel函数获取内核镜像在内存地址和大小:
- 调用genimg_get_kernel_addr_fit获取内核镜像uImage加载到内存的起始地址,也就是我们传入的0x30000000参数;
- 调用genimg_get_image解析0x30000000这个地址,如果这个地址位于dataflash storage,将会将内核镜像加载到RAM中;
- 调用genimg_get_format获取内核镜像格式:除了我们前面介绍的Legacy uImage、FIT uImage、还有安卓等格式;
- 然后初始化images.os.image_start,对于Legacy uImage,其值为内核镜像加载到内存的起始地址 + 镜像头64字节,即zImage加载到内存的起始地址;也就是0x30000040;对于FIT uImage,其值为itb文件中kernel节点data属性指向的内核镜像文件在内存中的地址,一般也是zImage加载到内存的起始地址;
- 初始化images.os.image_len,内核镜像数据长度,即zImage的大小;
- 初始化images.legacy_hdr_os:指向0x30000000地址;
- 将images.legacy_hdr_os指向的前64个字节拷贝到images.legacy_hdr_os_copy;即位uImage的头部做了一个备份;
- 设置images.legacy_hdr_valid = 1; 说明uImage的头部指针指向的头部是可用的,这是一个Legacy uImage类型
- 如果是FIT格式,还会初始化images中部分与fit相关的字段;
(2) 根据内核镜像文件的类型,去获取到内核信息,并初始化images.os的各个成员,包括:
- 内核镜像类型images.os.type;即images.legacy_hdr_os->ih_type;
- 内核压缩方式images.os.comp; 即images.legacy_hdr_os->ih_comp;
- 内核操作系统类型images.os.os;即images.legacy_hdr_os->ih_os;
- 内核镜像在内存的结束地址image.os.end;
- 内核要装载到内存的地址images.os.load;即images.legacy_hdr_os->ih_load;
- 内核的CPU体系架构images.os.arch;即images.legacy_hdr_os->ih_arch;
(3) 最后从头部image_header中获得镜像入口地址并存储到images.ep,即images.legacy_hdr_os->ih_ep;其实就是内核的启动地址了;
这里要说明一下,现在Legacy uImage内核镜像文件所在的内存地址是0x30000000,而内核启动的内存地址是在images.ep成员所指向的地址;
3.3.3 bootm_find_other
static int bootm_find_other(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { if (((images.os.type == IH_TYPE_KERNEL) || (images.os.type == IH_TYPE_KERNEL_NOLOAD) || (images.os.type == IH_TYPE_MULTI)) && (images.os.os == IH_OS_LINUX || images.os.os == IH_OS_VXWORKS)) return bootm_find_images(flag, argc, argv); return 0; }
查找内核镜像外的其它镜像,比如FDT、ramdisk等。
3.3.4 bootm_load_os
static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end, int boot_progress) { image_info_t os = images->os; ulong load = os.load; ulong blob_start = os.start; ulong blob_end = os.end; ulong image_start = os.image_start; ulong image_len = os.image_len; bool no_overlap; void *load_buf, *image_buf; int err; load_buf = map_sysmem(load, 0); // 获取zImage解压之后,得到的Image的存放地址 image_buf = map_sysmem(os.image_start, image_len); // 获取zImage镜像在内存中的地址 err = bootm_decomp_image(os.comp, load, os.image_start, os.type, // 重点,解压缩,重定位 load_buf, image_buf, image_len, CONFIG_SYS_BOOTM_LEN, load_end); if (err) { bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); return err; } flush_cache(load, *load_end - load); debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, *load_end); bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED); no_overlap = (os.comp == IH_COMP_NONE && load == image_start); if (!no_overlap && (load < blob_end) && (*load_end > blob_start)) { debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n", blob_start, blob_end); debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load, *load_end); /* Check what type of image this is. */ if (images->legacy_hdr_valid) { if (image_get_type(&images->legacy_hdr_os_copy) == IH_TYPE_MULTI) puts("WARNING: legacy format multi component image overwritten\n"); return BOOTM_ERR_OVERLAP; } else { puts("ERROR: new format image overwritten - must RESET the board to recover\n"); bootstage_error(BOOTSTAGE_ID_OVERWRITTEN); return BOOTM_ERR_RESET; } } return 0; }
3.3.5 boot_fn
boot_fn的定义为:
boot_os_fn *boot_fn;
可以看出它是一个boot_os_fn类型的函数指针。它的定义为
/* * Continue booting an OS image; caller already has: * - copied image header to global variable `header' * - checked header magic number, checksums (both header & image), * - verified image architecture (PPC) and type (KERNEL or MULTI), * - loaded (first part of) image to header load address, * - disabled interrupts. * * @flag: Flags indicating what to do (BOOTM_STATE_...) * @argc: Number of arguments. Note that the arguments are shifted down * so that 0 is the first argument not processed by U-Boot, and * argc is adjusted accordingly. This avoids confusion as to how * many arguments are available for the OS. * @images: Pointers to os/initrd/fdt * @return 1 on error. On success the OS boots so this function does * not return. */ typedef int boot_os_fn(int flag, int argc, char * const argv[], bootm_headers_t *images); extern boot_os_fn do_bootm_linux;
然后boot_fn在do_bootm函数中被赋值为:
boot_fn = bootm_os_get_boot_func(images->os.os);
bootm_os_get_boot_func函数返回的是boot_os[os],boot_os是一个函数指针数组,定义在common/bootm_os.c文件中:
static boot_os_fn *boot_os[] = { [IH_OS_U_BOOT] = do_bootm_standalone, #ifdef CONFIG_BOOTM_LINUX [IH_OS_LINUX] = do_bootm_linux, #endif #ifdef CONFIG_BOOTM_NETBSD [IH_OS_NETBSD] = do_bootm_netbsd, #endif #ifdef CONFIG_LYNXKDI [IH_OS_LYNXOS] = do_bootm_lynxkdi, #endif #ifdef CONFIG_BOOTM_RTEMS [IH_OS_RTEMS] = do_bootm_rtems, #endif #if defined(CONFIG_BOOTM_OSE) [IH_OS_OSE] = do_bootm_ose, #endif #if defined(CONFIG_BOOTM_PLAN9) [IH_OS_PLAN9] = do_bootm_plan9, #endif #if defined(CONFIG_BOOTM_VXWORKS) && \ (defined(CONFIG_PPC) || defined(CONFIG_ARM)) [IH_OS_VXWORKS] = do_bootm_vxworks, #endif #if defined(CONFIG_CMD_ELF) [IH_OS_QNX] = do_bootm_qnxelf, #endif #ifdef CONFIG_INTEGRITY [IH_OS_INTEGRITY] = do_bootm_integrity, #endif #ifdef CONFIG_BOOTM_OPENRTOS [IH_OS_OPENRTOS] = do_bootm_openrtos, #endif };
u-boot支持的操作操作系统类型宏在include/config_defaults.h文件中定义:
/* Support bootm-ing different OSes */ #define CONFIG_BOOTM_LINUX 1 #define CONFIG_BOOTM_NETBSD 1 #define CONFIG_BOOTM_PLAN9 1 #define CONFIG_BOOTM_RTEMS 1 #define CONFIG_BOOTM_VXWORKS 1
我们的内核是linux操作系统,因此boot_fn指向的是do_bootm_linux。
3.3.6 boot_selected_os
int boot_selected_os(int argc, char * const argv[], int state, bootm_headers_t *images, boot_os_fn *boot_fn) { arch_preboot_os(); boot_fn(state, argc, argv, images); /* Stand-alone may return when 'autostart' is 'no' */ if (images->os.type == IH_TYPE_STANDALONE || state == BOOTM_STATE_OS_FAKE_GO) /* We expect to return */ return 0; bootstage_error(BOOTSTAGE_ID_BOOT_OS_RETURNED); #ifdef DEBUG puts("\n## Control returned to monitor - resetting...\n"); #endif return BOOTM_ERR_RESET; }
函数最后一个参数就是我们传入的do_bootm_linux函数,这里将会执行该函数,进行linux内核的启动。
四、do_bootm_linux函数
do_bootm_linux函数在不同的硬件平台有不同的实现,我们这里查看的ARM架构的实现代码,代码位于arch/arm/lib/bootm.c文件:
/* Main Entry point for arm bootm implementation * * Modeled after the powerpc implementation * DIFFERENCE: Instead of calling prep and go at the end * they are called if subcommand is equal 0. */ int do_bootm_linux(int flag, int argc, char * const argv[], bootm_headers_t *images) { /* No need for those on ARM */ if (flag & BOOTM_STATE_OS_BD_T || flag & BOOTM_STATE_OS_CMDLINE) // 不执行 return -1; if (flag & BOOTM_STATE_OS_PREP) { // 执行 boot_prep_linux(images); return 0; } if (flag & (BOOTM_STATE_OS_GO | BOOTM_STATE_OS_FAKE_GO)) { // 执行 boot_jump_linux(images, flag); return 0; } boot_prep_linux(images); boot_jump_linux(images, flag); return 0; }
我们一点一点分析这里函数的执行流程,其流程大致如下:
4.1 boot_prep_linux
首先先执行BOOTM_STATE_OS_PREP的代码,这里调用的是boot_prep_linux,函数位于arch/arm/lib/bootm.c,这个函数跟内核传递参数有关系,为内核设置启动参数,u-boot向内核传递参数就是在这里做的准备:
/* Subcommand: PREP */ static void boot_prep_linux(bootm_headers_t *images) { char *commandline = getenv("bootargs"); if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len) { // 不执行 #ifdef CONFIG_OF_LIBFDT debug("using: FDT\n"); if (image_setup_linux(images)) { printf("FDT creation failed! hanging..."); hang(); } #endif } else if (BOOTM_ENABLE_TAGS) { debug("using: ATAGS\n"); setup_start_tag(gd->bd); if (BOOTM_ENABLE_SERIAL_TAG) // 不执行 setup_serial_tag(¶ms); if (BOOTM_ENABLE_CMDLINE_TAG) // 执行 setup_commandline_tag(gd->bd, commandline); if (BOOTM_ENABLE_REVISION_TAG) // 不执行 setup_revision_tag(¶ms); if (BOOTM_ENABLE_MEMORY_TAGS) // 执行 setup_memory_tags(gd->bd); if (BOOTM_ENABLE_INITRD_TAG) { //执行 /* * In boot_ramdisk_high(), it may relocate ramdisk to * a specified location. And set images->initrd_start & * images->initrd_end to relocated ramdisk's start/end * addresses. So use them instead of images->rd_start & * images->rd_end when possible. */ if (images->initrd_start && images->initrd_end) { setup_initrd_tag(gd->bd, images->initrd_start, images->initrd_end); } else if (images->rd_start && images->rd_end) { setup_initrd_tag(gd->bd, images->rd_start, images->rd_end); } } setup_board_tags(¶ms); setup_end_tag(gd->bd); } else { printf("FDT and ATAGS support not compiled in - hanging\n"); hang(); } }
这里先调用char *commandline = getenv("bootargs");从u-boot的环境变量中获取到我们传入的启动参数,比如上一节我们提到的启动参数:
noinitrd root=/dev/mtdblock3 init=/linuxrc console=ttySAC0
如果使用了设备树的话,这里将会调用image_setup_linux函数,该函数会在设备树的choosen节点下添加bootargs属性,其属性的内容就是bootargs环境变量的值。
不过这里我们没有使用设备树,因此走的是设置各种tag的逻辑,关于这一块具体内容可以看Mini2440之BootLoader简单实现第3.3节内容,下面是一个tag在内存的分布示意图,图中地址只供参考,实际上:
- u-boot中gd->bd:指向地址空间为CONFIG_SYS_SDRAM_BASE + PHYS_SDRAM_1_SIZE - uboot大小 - 64kb - 4MB - sizeof(bd_t):因此第一个tag地址位于gd->bd->bi_boot_params,而不是图中的0x30000100;
- kernel地址位于0x30000000,而不是图中的0x30008000;
4.1.1 struct tag
struct tag的结构如下:
struct tag { struct tag_header hdr; union { struct tag_core core; struct tag_mem32 mem; struct tag_videotext videotext; struct tag_ramdisk ramdisk; struct tag_initrd initrd; struct tag_serialnr serialnr; struct tag_revision revision; struct tag_videolfb videolfb; struct tag_cmdline cmdline; /* * Acorn specific */ struct tag_acorn acorn; /* * DC21285 specific */ struct tag_memclk memclk; } u; };
/* The list ends with an ATAG_NONE node. */ #define ATAG_NONE 0x00000000 struct tag_header { u32 size; u32 tag; }; /* The list must start with an ATAG_CORE node */ #define ATAG_CORE 0x54410001 struct tag_core { u32 flags; /* bit 0 = read-only */ u32 pagesize; u32 rootdev; }; /* it is allowed to have multiple ATAG_MEM nodes */ #define ATAG_MEM 0x54410002 struct tag_mem32 { u32 size; u32 start; /* physical start address */ }; ...
tag结构包括tag头hdr和各种类型的tag_* ;hdr来标志当前的tag是哪种类型。
4.1.2 setup_start_tag
调用setup_start_tag设置启动要用到的 tag,在这里有一个全局静态变量static struct tag *params;bd->bi_boot_params的值赋给它:
static void setup_start_tag (bd_t *bd) { params = (struct tag *)bd->bi_boot_params; params->hdr.tag = ATAG_CORE; params->hdr.size = tag_size (tag_core); params->u.core.flags = 0; params->u.core.pagesize = 0; params->u.core.rootdev = 0; params = tag_next (params); }
setup_start_tag是初始化了第一个tag,类型为tag_core。 最后调用tag_next跳到第一个tag末尾,为下一个tag赋值做准备。
4.1.3 setup_commandline_tag
在头文件smdk2410.h配置了:
#define CONFIG_CMDLINE_TAG /* enable passing of ATAGs */ #define CONFIG_SETUP_MEMORY_TAGS #define CONFIG_INITRD_TAG
因此,会执行setup_commandline_tag、setup_memory_tags、setup_initrd_tag(与ramdisk相关,这里我们没有使用)。
setup_commandline_tag代码如下:
static void setup_commandline_tag(bd_t *bd, char *commandline) { char *p; if (!commandline) return; /* eat leading white space */ for (p = commandline; *p == ' '; p++); /* skip non-existent command lines so the kernel will still * use its default command line. */ if (*p == '\0') return; params->hdr.tag = ATAG_CMDLINE; params->hdr.size = (sizeof (struct tag_header) + strlen (p) + 1 + 4) >> 2; strcpy (params->u.cmdline.cmdline, p); params = tag_next (params); }
可以看出,这里调用了strcpy来赋值字符串,赋值的字符串正是,函数开头使用getenv获取的启动参数bootargs字符串。
4.1.4 setup_memory_tags
static void setup_memory_tags(bd_t *bd) { int i; for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { // 1 params->hdr.tag = ATAG_MEM; params->hdr.size = tag_size (tag_mem32); params->u.mem.start = bd->bi_dram[i].start; params->u.mem.size = bd->bi_dram[i].size; params = tag_next (params); } }
如果有多片内存ram,会循环为每一片的ram设置一个tag。
4.1.5 setup_board_tags
setup_board_tags,这个是板级实现,如果没有实现则跳过:
__weak void setup_board_tags(struct tag **in_params) {}
static void setup_end_tag(bd_t *bd) { params->hdr.tag = ATAG_NONE; params->hdr.size = 0; }
由此可知我们的启动参数params是一片连续的内存,这片内存有很多个tag,我们通过调用不同的程序来设置这些tag。
4.2 boot_jump_linux
然后执行BOOTM_STATE_OS_GO里的代码,调用boot_jump_linux函数,位于arch/arm/lib/bootm.c.
该函数会将tag的首地址也就是gd->bd->bi_boot_params传给内核,并跳转到内核地址、启动内核,让内核解析这些tag。
/* Subcommand: GO */ static void boot_jump_linux(bootm_headers_t *images, int flag) { unsigned long machid = gd->bd->bi_arch_number; // 获取机器码 char *s; void (*kernel_entry)(int zero, int arch, uint params); // 内核入口函数 unsigned long r2; int fake = (flag & BOOTM_STATE_OS_FAKE_GO); kernel_entry = (void (*)(int, int, uint))images->ep; // 指定为内核入口地址 s = getenv("machid"); if (s) { if (strict_strtoul(s, 16, &machid) < 0) { debug("strict_strtoul failed!\n"); return; } printf("Using machid 0x%lx from environment\n", machid); } debug("## Transferring control to Linux (at address %08lx)" \ "...\n", (ulong) kernel_entry); bootstage_mark(BOOTSTAGE_ID_RUN_OS); announce_and_cleanup(fake); if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len) // 使能设备树 r2 = (unsigned long)images->ft_addr; else r2 = gd->bd->bi_boot_params; if (!fake) { kernel_entry(0, machid, r2); } }
主要流程:
- 获取gd->bd->bi_arch_number为machid,如果有env则用env的machid;
- 设置内核入口地址kernel_entry,将images->ep赋值给它作为跳转到内核执行的入口;
- r2设置为为gd->bd->bi_boot_params,也就是tag启动参数的起始地址;
- kernel_entry传入其余相关参数并执行kernel_entry启动;
关于machid的值可以参考内核解析U-boot传入的machid,S3C2440默认传入的是362。
参考文章
[2][uboot] uboot启动kernel篇(二)——bootm跳转到kernel的流程
[4]S5PV210-uboot解析(五)-do_bootm函数分析
[5]Linux内核镜像格式