STM32-串口发送数据-过程与配置


串口发送过程配置流程

HAL库中串口寄存器定义文件:

stm32f429xx.h F429芯片
stm32f767xx.h F767芯片
stm32f103xx.h F103芯片
stm32fnnnx.x.h 其他芯片

可以在其中找到USART_TypeDef:最终会映射到寄存器的地址。

typedef struct { __IO uint32_t CR1; /*!< USART Control register 1, Address offset: 0x00 */ __IO uint32_t CR2; /*!< USART Control register 2, Address offset: 0x04 */ __IO uint32_t CR3; /*!< USART Control register 3, Address offset: 0x08 */ __IO uint32_t BRR; /*!< USART Baud rate register, Address offset: 0x0C */ __IO uint32_t GTPR; /*!< USART Guard time and prescaler register, Address offset: 0x10 */ __IO uint32_t RTOR; /*!< USART Receiver Time Out register, Address offset: 0x14 */ __IO uint32_t RQR; /*!< USART Request register, Address offset: 0x18 */ __IO uint32_t ISR; /*!< USART Interrupt and status register, Address offset: 0x1C */ __IO uint32_t ICR; /*!< USART Interrupt flag Clear register, Address offset: 0x20 */ __IO uint32_t RDR; /*!< USART Receive Data register, Address offset: 0x24 */ __IO uint32_t TDR; /*!< USART Transmit Data register, Address offset: 0x28 */ } USART_TypeDef; 

HAL库中串口函数定义文件:

stm32f7xx_hal_uart.c ,stm32f7xx_hal_usart.c

串口字节发送流程:

  1. 编程USARTx_CR1的M位来定义字长。
  2. 编程USARTx_CR2的STOP位来定义停止位位数。
  3. 编程USARTx_BRR寄存器确定波特率。
  4. 使能USARTx_CR1的UE位使能USARTx。
  5. 如果进行多缓冲通信,配置USARTx_CR3的DMA使能(DMAT)。具体请参考后面DMA实验。
  6. 使能USARTx_CR1的TE位使能发送器。
  7. 向发送数据寄存器TDR写入要发送的数据(对于M3,发送和接收共用DR寄存器)。
  8. 向TRD寄存器写入最后一个数据后,等待状态寄存器USARTx_SR(ISR)的TC位置1,传输完成。

对于stm32f4:控制寄存器 1 (USART_CR1):

在这里插入图片描述

位12 M:字长 (Word length) 该位决定了字长。该位由软件置 1 或清零。

0:1 起始位,8 数据位,n 停止位

1:1 起始位,9 数据位,n 停止位

注意:在数据传输(发送和接收)期间不得更改 M 位

stm32f4控制寄存器 2 (USART_CR2):

在这里插入图片描述

位 13:12 STOP:停止位 (STOP bit)

这些位用于编程停止位。

00:1 个停止位

01:0.5 个停止位

10:2 个停止位

11:1.5 个停止位

注意:0.5 个停止位和 1.5 个停止位不适用于 UART4 和 UART5。

串口字节发送流程中的1、2、3设置串口的一些参数。接下来要使能使用到的串口:

同样在stm32f4控制寄存器 1 (USART_CR1)中可以找到:

位 13 UE:USART 使能 (USART enable)
该位清零后,USART 预分频器和输出将停止,并会结束当前字节传输以降低功耗。此位由软件置 1 和清零。
0:禁止 USART 预分频器和输出
1:使能 USART

位 3 TE:发送器使能 (Transmitter enable)
该位使能发送器。该位由软件置 1 和清零。
0:禁止发送器
1:使能发送器
注意:1:除了在智能卡模式下以外,传送期间 TE 位上的“0”脉冲(“0”后紧跟的是“1”)会在当前字的后面发送一个报头(空闲线路)。
2:当 TE 置 1 时,在发送开始前存在 1 位的时间延迟。

串口字节发送流程中的4、5、6步骤使能完成之后,接下来进行数据发送也就是7、8步骤。

串口字节发送流程(HAL库函数)

配置步骤①~⑥:配置字长,停止位,奇偶校验位,波特率等:

可以在stm32f7xx_hal_uart.c中找到:HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)函数:该函数内部会引用标识符__HAL_USART_ENABLE使能相应串口。

/** * @brief Initializes the UART mode according to the specified * parameters in the UART_InitTypeDef and creates the associated handle . * @param huart: uart handle * @retval HAL status */ HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart) { /* Check the UART handle allocation */ if(huart == NULL) { return HAL_ERROR; } if(huart->Init.HwFlowCtl != UART_HWCONTROL_NONE) { /* Check the parameters */ assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance)); } else { /* Check the parameters */ assert_param(IS_UART_INSTANCE(huart->Instance)); } if(huart->gState == HAL_UART_STATE_RESET) { /* Allocate lock resource and initialize it */ huart->Lock = HAL_UNLOCKED; /* Init the low level hardware : GPIO, CLOCK */ HAL_UART_MspInit(huart); } huart->gState = HAL_UART_STATE_BUSY; /* Disable the Peripheral */ __HAL_UART_DISABLE(huart); /* Set the UART Communication parameters */ if (UART_SetConfig(huart) == HAL_ERROR) { return HAL_ERROR; } if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) { UART_AdvFeatureConfig(huart); } /* In asynchronous mode, the following bits must be kept cleared: - LINEN and CLKEN bits in the USART_CR2 register, - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/ CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); /* Enable the Peripheral */ __HAL_UART_ENABLE(huart); /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ return (UART_CheckIdleState(huart)); } 

步骤⑦~⑧发送数据和等待发送完成:可以在stm32f7xx_hal_uart.c中找到:HAL_UART_Transmit函数:
HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)

__weak关键字:

函数前面加__weak修饰符,我们称之为弱函数。对于弱函数,用户可以在用户文件中重新定义一个同名函数,最终编译器编译的时候会选择用户定义的函数。如果用户没有定义,那么函数内容就是弱函数定义的内容。

函数声明:

可以在stm32f7xx_hal_uart.h中找到:void HAL_UART_MspInit(UART_HandleTypeDef *huart);

函数定义(弱函数):里面不做事

__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
{
}

弱函数被其他函数调用:

HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)

{

if(huart->gState == HAL_UART_STATE_RESET)
{
/* Allocate lock resource and initialize it */
huart->Lock = HAL_UNLOCKED;

​ /* Init the low level hardware : GPIO, CLOCK */

​ HAL_UART_MspInit(huart);

​ }

}

为什么要定义一个弱函数?

因为在hal库里面有其他的函数需要调用这样一个函数,但是里面的内容还不确定如何初始化,所以先定义一个weak函数。然后用户在可以再去编写函数的真正内容。这样的话不会报函数重定义的错误。运行流程一样,但是初始化可能不一样,使用weak函数的话,好处是我们不会对既有程序流程做任何修改,只需要修改流程中的某部分与用户相关的代码即可。

弱函数重新被定义:

void HAL_UART_MspInit(UART_HandleTypeDef *huart)
{
…//内容
}

__weak关键字的好处:

  • 对于事先已经定义好的一个流程,我们只希望修改流程中的某部分与用户相关的代码,这个时候我们可以采用弱函数定义一个空函数,然后让用户自行定义该函数。这样做的好处是我们不会对既有程序流程做任何修改。
  • HAL库中大量使用__weak关键字修饰外设回调函数。
  • 外设回调函数供用户编写MCU相关程序,大大提高程序的通用性移植性。

串口发送程序配置过程(HAL库):

  1. 初始化串口相关参数,使能串口:HAL_UART_Init();
  2. 串口相关IO口配置,复用配置:在HAL_UART_MspInit中调用HAL_GPIO_Init函数。
  3. 发送数据,并等待数据发送完成:HAL_UART_Transmit()函数;

然后根据上面的流程,开始编写代码:

初始化串口相关参数HAL_UART_Init();

先编一个初始化函数:

void uart1_init(void)
{
	
}

然后在HALLIB-stm32f7xx_hal_uart.c中找到:HAL_UART_Init函数,粘贴到初始化函数里,调用它:
然后发现他有一个入口参数UART_HandleTypeDef *huart是结构体指针部分。然后找到UART_HandleTypeDef的定义,可以找到:这个是串口句柄

typedef struct { USART_TypeDef *Instance; /*!< UART registers base address */ UART_InitTypeDef Init; /*!< UART communication parameters */ UART_AdvFeatureInitTypeDef AdvancedInit; /*!< UART Advanced Features initialization parameters */ uint8_t *pTxBuffPtr; /*!< Pointer to UART Tx transfer Buffer */ uint16_t TxXferSize; /*!< UART Tx Transfer size */ uint16_t TxXferCount; /*!< UART Tx Transfer Counter */ uint8_t *pRxBuffPtr; /*!< Pointer to UART Rx transfer Buffer */ uint16_t RxXferSize; /*!< UART Rx Transfer size */ uint16_t RxXferCount; /*!< UART Rx Transfer Counter */ uint16_t Mask; /*!< UART Rx RDR register mask */ DMA_HandleTypeDef *hdmatx; /*!< UART Tx DMA Handle parameters */ DMA_HandleTypeDef *hdmarx; /*!< UART Rx DMA Handle parameters */ HAL_LockTypeDef Lock; /*!< Locking object */ __IO HAL_UART_StateTypeDef gState; /*!< UART state information related to global Handle management and also related to Tx operations. This parameter can be a value of @ref HAL_UART_StateTypeDef */ __IO HAL_UART_StateTypeDef RxState; /*!< UART state information related to Rx operations. This parameter can be a value of @ref HAL_UART_StateTypeDef */ __IO uint32_t ErrorCode; /*!< UART Error code */ }UART_HandleTypeDef; 

USART_TypeDef是串口的类型。在文件中可以找到:

#define USART2 ((USART_TypeDef *) USART2_BASE) #define USART3 ((USART_TypeDef *) USART3_BASE) #define UART4 ((USART_TypeDef *) UART4_BASE) #define UART5 ((USART_TypeDef *) UART5_BASE) 

然后找到UART_InitTypeDef的定义,可以看到,是配置串口外设的一些特性参数。

typedef struct { uint32_t BaudRate; /*!< This member configures the UART communication baud rate. The baud rate register is computed using the following formula: - If oversampling is 16 or in LIN mode, Baud Rate Register = ((PCLKx) / ((huart->Init.BaudRate))) - If oversampling is 8, Baud Rate Register[15:4] = ((2 * PCLKx) / ((huart->Init.BaudRate)))[15:4] Baud Rate Register[3] = 0 Baud Rate Register[2:0] = (((2 * PCLKx) / ((huart->Init.BaudRate)))[3:0]) >> 1 */ uint32_t WordLength; /*!< Specifies the number of data bits transmitted or received in a frame. This parameter can be a value of @ref UARTEx_Word_Length */ uint32_t StopBits; /*!< Specifies the number of stop bits transmitted. This parameter can be a value of @ref UART_Stop_Bits */ uint32_t Parity; /*!< Specifies the parity mode. This parameter can be a value of @ref UART_Parity @note When parity is enabled, the computed parity is inserted at the MSB position of the transmitted data (9th bit when the word length is set to 9 data bits; 8th bit when the word length is set to 8 data bits). */ uint32_t Mode; /*!< Specifies whether the Receive or Transmit mode is enabled or disabled. This parameter can be a value of @ref UART_Mode */ uint32_t HwFlowCtl; /*!< Specifies whether the hardware flow control mode is enabled or disabled. This parameter can be a value of @ref UART_Hardware_Flow_Control */ uint32_t OverSampling; /*!< Specifies whether the Over sampling 8 is enabled or disabled, to achieve higher speed (up to fPCLK/8). This parameter can be a value of @ref UART_Over_Sampling */ uint32_t OneBitSampling; /*!< Specifies whether a single sample or three samples' majority vote is selected. Selecting the single sample method increases the receiver tolerance to clock deviations. This parameter can be a value of @ref UART_OneBit_Sampling */ }UART_InitTypeDef; 

此时可以在初始化函数中写:

UART_HandleTypeDef usart1_handler; void uart1_init(void) { usart1_handler.Instance = USART1; usart1_handler.Init.BaudRate = 115200; usart1_handler.Init.WordLength = UART_WORDLENGTH_8B; usart1_handler.Init.StopBits = UART_STOPBITS_1; usart1_handler.Init.HwFlowCtl = UART_HWCONTROL_NONE; usart1_handler.Init.Mode = UART_MODE_TX_RX; usart1_handler.Init.Parity = UART_PARITY_NONE; HAL_UART_Init(&usart1_handler); } 

《这里面参数都有哪些怎么找?》可以首先在HALLIB-stm32f7xx_hal_uart.c找到assert_param(IS_UART_INSTANCE(huart->Instance));然后双击IS_UART_INSTANCE找到它的定义,可以发现如下代码:然后就知道都可以填啥参数了,可以选择USART1作为参数。其他的参数设置也是类似的方式。

#define IS_UART_INSTANCE(__INSTANCE__) (((__INSTANCE__) == USART1) || \ ((__INSTANCE__) == USART2) || \ ((__INSTANCE__) == USART3) || \ ((__INSTANCE__) == UART4) || \ ((__INSTANCE__) == UART5) || \ ((__INSTANCE__) == USART6) || \ ((__INSTANCE__) == UART7) || \ ((__INSTANCE__) == UART8)) 
串口相关IO口配置HAL_UART_MspInit

在HALLIB-stm32f7xx_hal_uart.h中可以找到HAL_UART_MspInit的声明:void HAL_UART_MspInit(UART_HandleTypeDef *huart);

现在编写这个函数:最终这个函数会被HAL_UART_Init调用。由于STM32有好几个UART串口,所以先进行判断

void HAL_UART_MspInit(UART_HandleTypeDef *huart) { if(huart->Instance==UART1) { } } 

端口复用配置过程:

1.GPIO端口时钟使能。
__HAL_RCC_GPIOA_CLK_ENABLE(); //使能GPIO时钟

2.复用外设时钟使能。
比如你要将端口PA9,PA10复用为串口,所以要使能串口时钟。
__HAL_RCC_USART1_CLK_ENABLE(); //使能串口1时钟

3.端口模式配置为复用功能。 HAL_GPIO_Init函数。
GPIO_Initure.Mode=GPIO_MODE_AF_PP; //复用推挽输出

4.配置GPIOx_AFRL或者GPIOx_AFRH寄存器,将IO连接到所需的AFx。HAL_GPIO_Init函数。

GPIO_Initure.Alternate=GPIO_AF7_USART1;//复用为USART1

对于端口,需要设置GPIO_InitTypeDef *GPIO_Init参数。如下

typedef struct { uint32_t Pin; /*!< Specifies the GPIO pins to be configured. This parameter can be any value of @ref GPIO_pins_define */ uint32_t Mode; /*!< Specifies the operating mode for the selected pins. This parameter can be a value of @ref GPIO_mode_define */ uint32_t Pull; /*!< Specifies the Pull-up or Pull-Down activation for the selected pins. This parameter can be a value of @ref GPIO_pull_define */ uint32_t Speed; /*!< Specifies the speed for the selected pins. This parameter can be a value of @ref GPIO_speed_define */ uint32_t Alternate; /*!< Peripheral to be connected to the selected pins. This parameter can be a value of @ref GPIO_Alternate_function_selection */ }GPIO_InitTypeDef; 

都设置完之后就是下面的串口相关IO口配置代码:

void HAL_UART_MspInit(UART_HandleTypeDef *huart) { GPIO_InitTypeDef GPIO_Initure; if(huart->Instance==UART1) { __HAL_RCC_GPIOA_CLK_ENABLE(); //使能GPIOA时钟 __HAL_RCC_USART1_CLK_ENABLE(); //使能USART1时钟 GPIO_Initure.Pin=GPIO_PIN_9; //PA9 GPIO_Initure.Mode=GPIO_MODE_AF_PP; //复用推挽输出 GPIO_Initure.Pull=GPIO_PULLUP; //上拉 GPIO_Initure.Speed=GPIO_SPEED_HIGH; //高速 GPIO_Initure.Alternate=GPIO_AF7_USART1; //复用为USART1 HAL_GPIO_Init(GPIOA,&GPIO_Initure); //初始化PA9 GPIO_Initure.Pin=GPIO_PIN_10; //PA10 HAL_GPIO_Init(GPIOA,&GPIO_Initure); //初始化PA10 } } 
发送数据HAL_UART_Transmit()

首先在stm32f7xx_hal_uart.c中找到HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)

然后可以发现这里面要调用的一些参数。

最终的代码:

#include "sys.h" #include "delay.h" #include "usart.h" UART_HandleTypeDef usart1_handler; void uart1_init(void) { usart1_handler.Instance = USART1; usart1_handler.Init.BaudRate = 115200; usart1_handler.Init.WordLength = UART_WORDLENGTH_8B; usart1_handler.Init.StopBits = UART_STOPBITS_1; usart1_handler.Init.HwFlowCtl = UART_HWCONTROL_NONE; usart1_handler.Init.Mode = UART_MODE_TX_RX; usart1_handler.Init.Parity = UART_PARITY_NONE; HAL_UART_Init(&usart1_handler); } void HAL_UART_MspInit(UART_HandleTypeDef *huart) { GPIO_InitTypeDef GPIO_Initure; if(huart->Instance==USART1) { __HAL_RCC_GPIOA_CLK_ENABLE(); //使能GPIOA时钟 __HAL_RCC_USART1_CLK_ENABLE(); //使能USART1时钟 GPIO_Initure.Pin=GPIO_PIN_9; //PA9 GPIO_Initure.Mode=GPIO_MODE_AF_PP; //复用推挽输出 GPIO_Initure.Pull=GPIO_PULLUP; //上拉 GPIO_Initure.Speed=GPIO_SPEED_HIGH; //高速 GPIO_Initure.Alternate=GPIO_AF7_USART1; //复用为USART1 HAL_GPIO_Init(GPIOA,&GPIO_Initure); //初始化PA9 GPIO_Initure.Pin=GPIO_PIN_10; //PA10 HAL_GPIO_Init(GPIOA,&GPIO_Initure); //初始化PA10 } } int main(void) { u8 buff[]="test"; Cache_Enable(); //打开L1-Cache HAL_Init(); //初始化HAL库 Stm32_Clock_Init(432,25,2,9); //设置时钟,216Mhz delay_init(216); uart1_init(); while(1) { HAL_UART_Transmit(&usart1_handler,buff,sizeof(buff),1000); delay_ms(300); } }


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM