PyTorch搭建神经网络进行气温预测


简化的网络模型

###########————————————————————导包————————————————————————————————##############
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
import warnings
warnings.filterwarnings("ignore")  #  将python中产生的warning信息忽略
%matplotlib inline
##---------------传数据------------------
features = pd.read_csv('temps.csv')
# 处理时间数据
import datetime

# 分别得到年,月,日
years = features['year']
months = features['month']
days = features['day']

# datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]

#----------------------- 准备画图------------------------
# 指定默认风格
plt.style.use('fivethirtyeight')

# 设置布局
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
fig.autofmt_xdate(rotation = 45)

# 标签值
ax1.plot(dates, features['actual'])
ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')

# 昨天
ax2.plot(dates, features['temp_1'])
ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')

# 前天
ax3.plot(dates, features['temp_2'])
ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')

# 我的逗逼朋友
ax4.plot(dates, features['friend'])
ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')

plt.tight_layout(pad=2)


#数据格式化  独热编码
features = pd.get_dummies(features)
features.head(5)

# 标签
labels = np.array(features['actual'])

# 在特征中去掉标签
features= features.drop('actual', axis = 1)

# 名字单独保存一下,以备后患
feature_list = list(features.columns)

# 转换成合适的格式
features = np.array(features)

#数据预处理
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)

##############——————————————————————————————搭建pytorch————————————————————##########
input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16
my_nn = torch.nn.Sequential(    # 类似keras
    torch.nn.Linear(input_size, hidden_size),
    torch.nn.Sigmoid(),
    torch.nn.Linear(hidden_size, output_size),
)
cost = torch.nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)


# 训练网络
losses = []
for i in range(1000):
    batch_loss = []
    # MINI-Batch方法来进行训练
    for start in range(0, len(input_features), batch_size):
        end = start + batch_size if start + batch_size < len(input_features) else len(input_features)
        xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)
        yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)
        prediction = my_nn(xx)
        loss = cost(prediction, yy)
        optimizer.zero_grad()
        loss.backward(retain_graph=True)
        optimizer.step()
        batch_loss.append(loss.data.numpy())
    
    # 打印损失
    if i % 100==0:
        losses.append(np.mean(batch_loss))
        print(i, np.mean(batch_loss))

##测试
x = torch.tensor(input_features, dtype = torch.float)
predict = my_nn(x).data.numpy()
# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]

# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})

# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, feature_list.index('month')]
days = features[:, feature_list.index('day')]
years = features[:, feature_list.index('year')]

test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]

test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]

predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)}) 
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')

# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
plt.xticks(rotation = '60'); 
plt.legend()

# 图名
plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');

 

 复杂的网络模型

import pandas as pd
import numpy as np
import datetime
import matplotlib.pyplot as plt

features = pd.read_csv('temps.csv')

# 可视化图形
print(features.head(5))

#使用日期构造可视化图像
dates = [str(int(year)) + "-" + str(int(month)) + "-" + str(int(day)) for year, month, day in zip(features['year'], features['month'], features['day'])]
dates = [datetime.datetime.strptime(date, "%Y-%m-%d") for date in dates]

# 进行画图操作
plt.style.use("fivethirtyeight")

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(10, 10))
fig.autofmt_xdate(rotation=45)

ax1.plot(dates, features["temp_1"])
ax1.set_xlabel('')
ax1.set_ylabel('Temperature')
ax1.set_title("Previous max Temp")

ax2.plot(dates, features["temp_2"])
ax2.set_xlabel('')
ax2.set_ylabel('Temperature')
ax2.set_title("Two day Prio max Temp")

ax3.plot(dates, features["friend"])
ax3.set_xlabel('')
ax3.set_ylabel('Temperature')
ax3.set_title("Friend Estimate")

ax4.plot(dates, features["actual"])
ax4.set_xlabel('')
ax4.set_ylabel('Temperature')
ax4.set_title("Max Temperature")

plt.tight_layout(pad=2)
plt.show()

#数据格式化  独热编码
features = pd.get_dummies(features)
features.head(5)

# 标签
labels = np.array(features['actual'])

# 在特征中去掉标签
features= features.drop('actual', axis = 1)

# 名字单独保存一下,以备后患
feature_list = list(features.columns)

# 转换成合适的格式
features = np.array(features)

#数据预处理  
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)

x=torch.tensor(input_features, dtype=torch.float)
y=torch.tensor(labels, dtype=torch.float)
#权重参数初始化
weights1=torch.randn((14,128), dtype=torch.float, requires_grad=True)
biases1=torch.randn(128, dtype=torch.float, requires_grad=True)
weights2=torch.randn((128,1), dtype=torch.float, requires_grad=True)
biases2=torch.randn(1,dtype=torch.float, requires_grad=True)

learning_rate=0.001
losses=[]

for i in range(1000):
#-------------前向传播----------------------
    #计算隐层
    hidden=x.mm(weights1)+biases1 #.mm是一个矩阵乘法
    #加入激活函数
    hidden=torch.relu(hidden)
    #预测结果
    predictions=hidden.mm(weights2)+biases2
#--------------------------------------------
    #计算损失,均方误差
    loss=torch.mean((predictions-y)**2)
    losses.append(loss.data.numpy())
    
    #打印损失值
    if i%100==0:
        print('loss:', loss)
    
    #反向传播计算(如何基于损失来计算w1,b1,w2,b2,使用反向传播)
    loss.backward()
    
    #更新参数
    weights1.data.add_(-learning_rate*weights1.grad.data)
    biases1.data.add_(-learning_rate*biases1.grad.data)
    weights2.data.add_(-learning_rate*weights2.grad.data)
    biases2.data.add_(-learning_rate*biases2.grad.data)
    
    #每次更新迭代后记得清空
    weights1.grad.data.zero_()
    biases1.grad.data.zero_()
    weights2.grad.data.zero_()
    biases2.grad.data.zero_()
    

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM