fastText-文本分类


一、fastText安装

  1. windows下直接:pip install fasttext
  2. 直接下载whl包安装

二、fastText介绍

  fastText是一个快速文本分类算法,与基于神经网络的分类算法相比有两大优点:
    1、fastText在保持高精度的情况下加快了训练速度和测试速度
    2、fastText不需要预训练好的词向量,fastText会自己训练词向量
    3、fastText两个重要的优化:Hierarchical Softmax、N-gram

  fastText结合了自然语言处理和机器学习中最成功的理念。这些包括了使用词袋以及n-gram袋表征语句,还有使用子字(subword)信息,并通过隐藏表征在类别间共享信息。我们另外采用了一个softmax层级(利用了类别不均衡分布的优势)来加速运算过程。

   这些不同概念被用于两个不同任务: 

    • 有效文本分类 :有监督学习
    • 学习词向量表征:无监督学习

三、fastText原理 

  包含三部分,模型架构,层次SoftMax,N-gram特征。

1、模型架构

  fastText模型架构和word2vec中的CBOW很相似, 不同之处是fastText预测标签而CBOW预测的是中间词,即模型架构类似但是模型的任务不同。

  1、word2vec的CBOW架构

  word2vec将上下文关系转化为多分类任务,进而训练逻辑回归模型,这里的类别数量|V|词库大小。通常的文本数据中,词库少则数万,多则百万,在训练中直接训练多分类逻辑回归并不现实。word2vec中提供了两种针对大规模多分类问题的优化手段, negative sampling 和hierarchical softmax。在优化中,negative sampling 只更新少量负面类,从而减轻了计算量。hierarchical softmax 将词库表示成前缀树,从树根到叶子的路径可以表示为一系列二分类器,一次多分类计算的复杂度从|V|降低到了树的高度

                    

  2、fastText模型架构

  其中x1,x2,…,xN−1,xN表示一个文本中的n-gram向量,每个特征是词向量的平均值。这和前文中提到的cbow相似,cbow用上下文去预测中心词,而此处用全部的n-gram去预测指定类别;

  fastText 模型输入一个词的序列(一段文本或者一句话),输出这个词序列属于不同类别的概率。序列中的词和词组组成特征向量,特征向量通过线性变换映射到中间层,中间层再映射到标签。fastText 在预测标签时使用了非线性激活函数,但在中间层不使用非线性激活函数。

                

  3、Subword子嵌入:

  一句话简述:fastText提出了子词嵌入(subword embedding)的方法。是一种监督学习方法。和word2vec 中的CBOW结构很相似。运行速度较快。

  对一些出现次数很少或者没有出现的词,使用subword的词向量之和来表达,如coresponse这个词,使用co的词向量与response的词向量之和来表示

 2、层次softmax

  softmax函数常在神经网络输出层充当激活函数,目的就是将输出层的值归一化到0-1区间,将神经元输出构造成概率分布,主要就是起到将神经元输出值进行归一化的作用,下图展示了softmax函数对于输出值z1=3,z2=1,z3=-3的归一化映射过程

                                  

  在标准的softmax中,计算一个类别的softmax概率时,我们需要对所有类别概率做归一化,在这类别很大情况下非常耗时,因此提出了分层softmax(Hierarchical Softmax),思想是根据类别的频率构造霍夫曼树来代替标准softmax,通过分层softmax可以将复杂度从N降低到logN,上图给出分层softmax示例。

  在层次softmax模型中,叶子结点的词没有直接输出的向量,而非叶子节点都有响应的输在在模型的训练过程中,通过Huffman编码,构造了一颗庞大的Huffman树,同时会给非叶子结点赋予向量。我们要计算的是目标词w的概率,这个概率的具体含义,是指从root结点开始随机走,走到目标词w的概率。因此在途中路过非叶子结点(包括root)时,需要分别知道往左走和往右走的概率。例如到达非叶子节点n的时候往左边走和往右边走的概率分别是:
      

以上图中目标词为w2为例:

      

 到这里可以看出目标词为w的概率可以表示为:

       

 其中θn(w,j)是非叶子结点n(w,j)的向量表示(即输出向量);h是隐藏层的输出值,从输入词的向量中计算得来;sign(x,j)是一个特殊函数定义:

      

 此外,所有词的概率和为1,即

      

 最终得到参数更新公式为:

       

  对于有大量类别的数据集,fastText使用了一个分层分类器(而非扁平式架构)。不同的类别被整合进树形结构中(想象下二叉树而非 list)。在某些文本分类任务中类别很多,计算线性分类器的复杂度高。为了改善运行时间,fastText 模型使用了层次 Softmax 技巧。层次 Softmax 技巧建立在哈弗曼编码的基础上,对标签进行编码,能够极大地缩小模型预测目标的数量。fastText 也利用了类别(class)不均衡这个事实(一些类别出现次数比其他的更多),通过使用 Huffman 算法建立用于表征类别的树形结构。因此,频繁出现类别的树形结构的深度要比不频繁出现类别的树形结构的深度要小,这也使得进一步的计算效率更高。

                    

    思考一下哈夫曼树到底是怎么回事?

 

3、N-gram特征

  n-gram是基于语言模型的算法,基本思想是将文本内容按照子节顺序进行大小为N的窗口滑动操作,最终形成窗口为N的字节片段序列。而且需要额外注意一点是n-gram可以根据粒度不同有不同的含义,有字粒度的n-gram和词粒度的n-gram,下面分别给出了字粒度和词粒度的例子:

            

  对于文本句子的n-gram来说,如上面所说可以是字粒度或者是词粒度,同时n-gram也可以在字符级别工作,例如对单个单词matter来说,假设采用3-gram特征,那么matter可以表示成图中五个3-gram特征,这五个特征都有各自的词向量,五个特征的词向量和即为matter这个词的向其中“<”和“>”是作为边界符号被添加,来将一个单词的ngrams与单词本身区分开来:

            

从上面来看,使用n-gram有如下优点
1、为罕见的单词生成更好的单词向量:根据上面的字符级别的n-gram来说,即是这个单词出现的次数很少,但是组成单词的字符和其他单词有共享的部分,因此这一点可以优化生成的单词向量
2、在词汇单词中,即使单词没有出现在训练语料库中,仍然可以从字符级n-gram中构造单词的词向量
3、n-gram可以让模型学习到局部单词顺序的部分信息, 如果不考虑n-gram则便是取每个单词,这样无法考虑到词序所包含的信息,即也可理解为上下文信息,因此通过n-gram的方式关联相邻的几个词,这样会让模型在训练的时候保持词序信息

但正如上面提到过,随着语料库的增加,内存需求也会不断增加,严重影响模型构建速度,针对这个有以下几种解决方案:
1、过滤掉出现次数少的单词
2、使用hash存储
3、由采用字粒度变化为采用词粒度

四、api使用    

 

 

 

参考


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM