\(PS\):符号 \([\ \rm P\ ]\) 的意义是:当表达式 \(\rm P\) 为真则取值为 \(1\),为假则取值为 \(0\)。
题目大意
给你一个一天有 \(H\) 小时、一小时有 \(M\) 分钟的表和一个正整数 \(A\),问一天内有多少个整数时刻,使得分针与时针的夹角小于等于 \(\displaystyle\frac{2\pi A}{HM}\)。
题目分析
易知分针转速 \(w_1=\displaystyle \frac{2\pi}{M}\),时针转速 \(w_2=\displaystyle\frac{2\pi}{HM}\),设当前时刻为 \(T\);
一天有 \(HM\) 个整数时刻,即 \(T\in[0,HM)\);
于是对于每一个时刻,我们判断一下两个指针的夹角 \(\theta\) 是否小于等于 \(\displaystyle\frac{2\pi A}{HM}\) ,满足就贡献加加,最后输出总贡献即可。
方法一:数论
对于任意时刻 \(T\) 与两指针间的夹角 \(\theta\),显然有:
注意到 \(\theta\in[0,2\pi]\),所以还要对 \(2\pi\) 取个模(分针转一圈又转回来了),即:
同时因为两个指针之间的夹角可以选到两个数值,逆时针转有一个夹角,顺时针转有一个夹角,这里我们肯定是选更小的角来判断是否满足条件,即最终我们要求的是:
可以转化为:
把 \(\theta=\displaystyle\frac{2\pi(H-1)T}{HM}\mod{2\pi}\) 代入并化简得:
此时我们其实就可以把 \(HM\) 看作是 \(2\pi\),\(H-1\) 看作是每过一个时刻两个指针夹角的变化量,然后分两种情况考虑:
问题等价于“一天内有多少个整数时刻,使得分针与时针的夹角小于等于 \(\pi\)”,显然每个时刻都满足(如果顺时针看夹角大于 \(\pi\),那逆时针看一定小于,反之亦然),此时答案为 \(HM\),特判即可;
若有 \(T(H-1)\mod{HM}\leq A\),则一定不会有 \(T(H-1)\mod{HM}\geq HM-A\),所以答案就是这两部分的贡献相加,同时我们令 \(G=\gcd(H-1,HM)\)。
先计算式子的左边:
当 \(G=1\) 时 ,因为 \(T\in[0,HM)\),构成了一个模 \(HM\) 的完全剩余系,由完全剩余系的性质可得 \(T(H-1)\mod{HM}\) 也是一个完全剩余系,即它一定取遍了 \(0\sim HM-1\) 的每一个数,此时我们就不用关心到底在哪个时刻造成了贡献,只需知道范围内有多少个数满足小于等于 \(A\) 即可,显然有 \(0\sim A\) 总共 \(A+1\) 个数满足,因此这部分的贡献就是 \(A+1\)。
当 \(G\neq1\) 时,我们利用同余的一个性质: \(\displaystyle ac\equiv bc\pmod d\iff a\equiv b\pmod{\frac{d}{(c,d)}}\),把式子转化为:
相当于我们把 \(T\in[0,HM)\) 平均分成了 \(G\) 段,每一段的 \(T\) 都构成了一个模 \(\displaystyle\frac{HM}{G}\) 的完全剩余系,此时这里的每一段其实就等价于上面 \(G=1\) 的情况,只是 \(T\) 的范围和模数变了下而已,因此每段都造成了 \(\displaystyle \lfloor\frac AG\rfloor+1\) 的贡献,左边的总贡献就是 \(G*(\displaystyle \lfloor\frac AG\rfloor+1)\)。
再看式子右边:
同样地,当 \(G=1\) 时,跟上面一样分析一波,发现其实是一样的思路(显然左边跟右边造成的贡献是对称的),只不过因为 \(T\) 不能取到 \(HM\),所以贡献只有 \(A\)(\(HM-A\sim HM-1\) 共有 \(A\) 个数)。
当 \(G\neq1\) 时,也同上,把 \(T\) 分成 \(G\) 段,右边的总贡献就是 \(G*\displaystyle \lfloor\frac AG\rfloor\)。
因此最终答案就是左边贡献和右边贡献之和,即 \(G*(\displaystyle 2\lfloor\frac AG\rfloor+1)\)。
#include<bits/stdc++.h>
using namespace std;
int main(){
long long H,M,A;
cin >> H >> M >> A;
if(H*M==A*2){
cout << H*M;
}
else {
long long G=__gcd(H-1,H*M);
cout << G*(2*(A/G)+1);
}
}
方法二:类欧几里得
待填坑~~
