思路:
只要找到是否有两天满足条件即可,我们可以这么分析,对于任意的两天,看这n组学生:
一天有课且另一天没课的记为cnt1
一天没课且另一天有课的记为cnt2
两天都有课的记为cnt3
两天都没课的记为cnt4
而两天都有课cnt3的可以放到cnt1中也可以放到cnt2中,我们只要满足cnt1+cnt3>=n/2,且cnt2+cnt3>=n/2,且cnt4==0,就代表有方案
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cmath> #include <queue> #include <set> #include <vector> #define x first #define y second using namespace std; typedef long long LL; typedef pair<int, int>PII; const int N = 200010; const int MOD = 1000000007; int a[N][6]; int main() { int T; cin >> T; while (T--) { int n; cin >> n; for (int i = 1; i <= n; i++) for (int j = 1; j <= 5; j++) cin >> a[i][j]; bool flag = false; for (int i = 1; i <= 5; i++) for (int j = i + 1; j <= 5; j++) { int cnt1 = 0, cnt2 = 0, cnt3 = 0, cnt4 = 0; for (int k = 1; k <= n; k++) { if (a[k][i] && !a[k][j]) cnt1++; if (!a[k][i] && a[k][j]) cnt2++; if (a[k][i] && a[k][j]) cnt3++; if (!a[k][i] && !a[k][j]) cnt4++; } if (cnt1 + cnt3 >= n / 2 && cnt2 + cnt3 >= n / 2 && cnt4 == 0) flag = true; } if (flag) cout << "YES" << endl; else cout << "NO" << endl; } return 0; }
思路:
排列组合问题,容斥原理,首先正难则反,我们可以先求出全集,然后减去不符合条件的个数,假设有A,B,C三个人,那么不符合的情况就为A的a属性和B相同,且A的b属性和C相同,就像下面这种情况:
那么当前这个数不满足条件的总数就为(和A相同的个数-1)乘上(和B相同个数的-1),-1是减去本身
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <set> #include <vector> #include <map> #include <unordered_set> #include <unordered_map> #define x first #define y second #define IOS ios::sync_with_stdio(false);cin.tie(0); using namespace std; typedef long long LL; typedef pair<int, int> PII; const int N = 200010, M = 100010, MOD = 1000000007, INF = 0x3f3f3f3f; int a[N], b[N]; map<int, int> mpa, mpb; int main() { IOS; int T; cin >> T; while(T -- ) { int n; cin >> n; mpa.clear(); mpb.clear(); for(int i = 1; i <= n; i ++ ) { cin >> a[i] >> b[i]; mpa[a[i]]++, mpb[b[i]]++; } LL res = (LL)n * (n - 1) * (n - 2) / 6; for (int i = 1; i <= n; i ++ ) res -= (LL)(mpa[a[i]] - 1) * (mpb[b[i]] - 1); cout << res << endl; } return 0; }