一个常见极限题的拓展


问题.\(f\in C[0,1]\),且\(f'(0)\)存在,则当\(n\to \infty\)时,有

\[\int_0^1 f(t^n)\text{d}t=f(0)+\frac{1}{n}\int_0^1\frac{f(t)-f(0)}{t}\text{d}t+o\Big(\frac{1}{n}\Big). \]

可以将等式左侧的积分记为\(I_n\),并定义\(g\)如下:

\[g(0)=f'(0),\ g(x)=\frac{f(x)-f(0)}{x}(0<x\leqslant 1). \]

于是\(g\in C[0,1]\),并设\(G(x)\)是其一个原函数. 我们断言:\(I_n\to f(0)\).

对于任何\(a\in (0,1)\),我们有

\[\begin{align*} |I_n-f(0)|& =\left|\int_0^1\big(f(t^n)-f(0)\big)\text{d}t\right|\\ & \leqslant \int_0^a\big|f(t^n)-f(0)\big|\text{d}t+\int_a^1\big|f(t^n)-f(0)\big|\text{d}t. \end{align*}\]

由题设,存在常数\(M\)使\(|f(x)|\leqslant M(0\leqslant x\leqslant 1)\). 给定\(\epsilon>0\),取\(a\in (0,1)\)使\(M(1-a)<\frac{\epsilon}{4}\),则

\[\int_a^1\big|f(t^n)-f(0)\big|\text{d}t\leqslant 2M(1-a)<\frac{\epsilon}{2}. \]

\(f\)连续知,\(\exists \alpha=\alpha(\epsilon)\),使\(x\in [0,\alpha]\)时有\(|f(x)-f(0)|\leqslant \frac{\epsilon}{2a}\).取\(n_0\in \mathbb{N}\)使\(a^{n_0}\leqslant \alpha\),则\(n\geqslant n_0\)时,对\(\forall t\in [0,a]\)\(t^n\leqslant a^n\leqslant a^{n_0}\leqslant \alpha\),故\(\big|f(t^n)-f(0)\big|\leqslant \frac{\epsilon}{2a}\).于是

\[\int_0^a\big|f(t^n)-f(0)\big|\text{d}t\leqslant a\cdot \frac{\epsilon}{2a}=\frac{\epsilon}{2}. \]

合起来即得\(|I_n-f(0)|<\epsilon\),即\(I_n\to f(0)\).

注意到\(t^n g(t^n)=f(t^n)-f(0)\),从而

\[n\big(I_n-f(0)\big)=\int_0^1 nt^n g(t^n)\text{d}t=\int_0^1 t\ \text{d}G(t^n)=G(1)-\int_0^1 G(t^n)\text{d}t. \]

根据\(I_n\to f(0)\)的证明,可知\(n\big(I_n-f(0)\big)\to G(1)-G(0)=\int_0^1 g(t)\text{d}t\).明所欲证.

\(\clubsuit\ \ \color{red}{\text{Note.}}\) 本题的结果仍可精细化,即为

推论.\(f\in C[0,1]\),且\(f'(0)\)存在,则对\(m\in \mathbb{N}^*\),有

\[\int_0^1 f(t^n)\text{d}t=f(0)+\sum_{k=0}^{m-1}\frac{1}{n^{k+1}}\int_0^1\frac{f(x)-f(0)}{x}\cdot\frac{\ln^k x}{k!}\text{d}x+O\Big(\frac{1}{n^{m+1}}\Big). \]

\(\textbf{证明.}\ \color{blue}{(By\ \text{MathRoc})}\) 简单的计算表明

\[\begin{align} \int_0^1 f(t^n)\text{d}t& \xlongequal{x=t^n} f(0)+\frac{1}{n}\int_0^1\frac{f(x)-f(0)}{x}\sqrt[\uproot{2}n]{x}\text{d}x \nonumber \\ & =f(0)+\frac{1}{n}\int_0^1\frac{f(x)-f(0)}{x}\left(\sum_{k=0}^{\infty}\frac{\ln^k x}{n^k\cdot k!}\right)\text{d}x\\ & =f(0)+\sum_{k=0}^{\infty}\frac{1}{n^{k+1}}\int_0^1\frac{f(x)-f(0)}{x}\cdot\frac{\ln^k x}{k!}\text{d}x\\ & =\left(f(0)+\sum_{k=0}^{m-1}\right)+\sum_{k\geqslant m}=:I+J.\nonumber \end{align}\]

其中\((1)\)式到\((2)\)式的推导是因\(\sqrt[\uproot{2}n]{x}=e^{\frac{\ln x}{n}}\)的幂级数一致收敛,故可换序.

由于\(f'(0)\)存在,所以\(\frac{f(x)-f(0)}{x}\)有界.设\(M\)\(\frac{f(x)-f(0)}{x}\)的一个上界,则

\[|J|\leqslant \sum_{k\geqslant m}\frac{M}{n^{k+1}}\left|\int_0^1\frac{\ln^k x}{k!}\text{d}x\right|=\sum_{k\geqslant m}\frac{M}{n^{k+1}}=O\Big(\frac{1}{n^{m+1}}\Big). \]

结合起来便得到结论.\(\quad\clubsuit\)


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM