时间复杂度


一个语句的频度是指该语句在算法中被重复执行的次数。算法中所有语句的频度之和记为T(n),它是该算法问题规模n的函数,时间复杂度主要分析T(n)的数量级。算法中基本运算(最深层循环内的语句)的频度与Tn)同数量级,因此通常采用算法中基本运算的频度fn)来分析算法的时间复杂度3。因此,算法的时间复杂度记为:T(n)= O(fn))
式中,О 的含义是T(n)的数量级,其严格的数学定义是:若T(n)和fn)是定义在正整数集合上的两个函数,则存在正常数C和n,使得当n≥no时,都满足0≤T(n)≤Cfn)。
算法的时间复杂度不仅依赖于问题的规模n,也取决于待输入数据的性质(如输入数据元素的初始状态)。例如,在数组A[ 0...n-1]中,查找给定值k的算法大致如下:
image
该算法中语句3(基本运算)的频度不仅与问题规模n有关,而且与输入实例中A的各元素的取值及k的取值有关:
①若A中没有与k相等的元素,则语句3的频度f(n)=n。
②若A的最后一个元素等于k,则语句3的频度(n)是常数0.
最坏时间复杂度是指在最坏情况下,算法的时间复杂度。
平均时间复杂度是指所有可能输入实例在等概率出现的情况下,算法的期望运行时间。
最好时间复杂度是指在最好情况下,算法的时间复杂度。
一般总是考虑在最坏情况下的时间复杂度,以保证算法的运行时间不会比它更长。
在分析一个程序的时间复杂性时,有以下两条规则:
image
常见的渐进时间复杂度:
image

image


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM