OpenCV 实现图片HDR功能


简介

  本篇主要是利用三张图片:过曝(相机设置exposure+1)、正常(相机设置exposure+0)、欠曝(相机设置exposure-1),来合成一张在亮出和暗处细节都清晰
的图片,来简易实现图片的HDR功能。

具体实现

实现代码

 1 #include <opencv2/core/core.hpp>                                                                                                     
 2 #include <opencv2/highgui/highgui.hpp>
 3 #include <math.h>
 4 #include <string.h>
 5 #include <opencv/cv.h>
 6 #include <stdio.h>
 7 #include "opencv2/photo/photo.hpp"
 8  
 9 using namespace cv; 10  
11 char highpicName[20]; 12 char normalpicName[20]; 13 char lowpicName[20]; 14 Mat mat1, mat2, mat3, dst_mat, tmp_mat; 15 int highWidth, highHeight; 16 int normalWidth, normalHeight; 17 int lowWidth, lowHeight; 18 IplImage src1, src2, src3, dst_src, tmp_src; 19 double weight=0.5; 20  
21  
22 void hdrCale(Mat pic1, Mat pic2, Mat pic3){ 23     int i, j; 24  CvScalar s1, s2, s3; 25  
26  
27     src1 = pic1; 28     src2 = pic2; 29     src3 = pic3; 30     dst_src = dst_mat; 31     tmp_src = tmp_mat; 32  
33     cvCvtColor(&src2, &tmp_src, CV_BGR2GRAY); 34     for(i=0; i< normalWidth; i++){ 35         for(j=0; j<normalHeight; j++){ 36             s1 = cvGet2D(&src1, i, j); 37             s2 = cvGet2D(&tmp_src, i, j); 38             s3 = cvGet2D(&src3, i, j); 39             weight = 0.5 + (127 - s2.val[0]) * 0.002; 40             s3.val[0] = (s1.val[0] * weight) + (s3.val[0] * (1-weight)); 41             s3.val[1] = (s1.val[1] * weight) + (s3.val[1] * (1-weight)); 42             s3.val[2] = (s1.val[2] * weight) + (s3.val[2] * (1-weight)); 43             cvSet2D(&dst_src, i, j, s3); 44  } 45  } 46 } 47  
48  
49 int main(int argc, char *argv[]){ 50     if(argc < 4){ 51         printf("Please input high exposure/normal exposure/low exposure picture!\n"); 52         return -1; 53  } 54     memcpy(highpicName, argv[1], sizeof(argv[1])); 55     memcpy(normalpicName, argv[2], sizeof(argv[2])); 56     memcpy(lowpicName, argv[3], sizeof(argv[3])); 57     mat1 = imread(argv[1]); 58     mat2 = imread(argv[2]); 59     mat3 = imread(argv[3]); 60     highWidth = mat1.rows; 61     highHeight = mat1.cols; 62     normalWidth = mat2.rows; 63     normalHeight = mat2.cols; 64     lowWidth = mat3.rows; 65     lowHeight = mat3.cols; 66     dst_mat = Mat(normalWidth, normalHeight, CV_8UC3, cv::Scalar(0, 0, 0)); 67     tmp_mat = Mat(normalWidth, normalHeight, CV_8UC1, cv::Scalar(0, 0, 0)); 68  
69  hdrCale(mat1, mat2, mat3); 70  
71     imshow("normal", mat2); 72     imshow("HDR", dst_mat); 73     imwrite("HDR.jpg", dst_mat); 74     cv::waitKey(0); 75     return 0; 76 }

代码讲解
  1、首先进行相对应的初始化操作:运行软件时候,需要传入三张图片,顺序上分别是:过曝、正常、欠曝。打开这三张图片,保存在mat1、mat2、mat3
中,注意这三张图片必须大小一致。接着获取到图片的width和height。最后创建两张空白图片:tmp_mat和dst_mat。

 1         if(argc < 4){  2         printf("Please input high exposure/normal exposure/low exposure picture!\n");  3         return -1;  4  }  5     memcpy(highpicName, argv[1], sizeof(argv[1]));  6     memcpy(normalpicName, argv[2], sizeof(argv[2]));  7     memcpy(lowpicName, argv[3], sizeof(argv[3]));  8     mat1 = imread(argv[1]);  9     mat2 = imread(argv[2]); 10     mat3 = imread(argv[3]); 11     highWidth = mat1.rows; 12     highHeight = mat1.cols; 13     normalWidth = mat2.rows; 14     normalHeight = mat2.cols; 15     lowWidth = mat3.rows; 16     lowHeight = mat3.cols; 17     dst_mat = Mat(normalWidth, normalHeight, CV_8UC3, cv::Scalar(0, 0, 0)); 18     tmp_mat = Mat(normalWidth, normalHeight, CV_8UC1, cv::Scalar(0, 0, 0));

  2、接着进入到HDR的算法处理:对应的处理很简单,主要就是根据就是权重,把过曝和欠曝图片合成到dst_mat中。
具体做法:循环依次打开三张图片的同一位置像素,用正常曝光图片像素,利用公式:weight = 0.5 + (127 - s2.val[0]) * 0.002;
来获得使用过曝、欠曝像素合成到dst_mat中对应使用的权值。接着:s3.val[0] = (s1.val[0] * weight) + (s3.val[0] * (1-weight));
计算出合成像素值之后,写入到dst_mat对应的坐标位置。进而生成HDR照片。

 1 void hdrCale(Mat pic1, Mat pic2, Mat pic3){  2     int i, j;  3  CvScalar s1, s2, s3;  4  
 5     src1 = pic1;  6     src2 = pic2;  7     src3 = pic3;  8     dst_src = dst_mat;  9     tmp_src = tmp_mat; 10  
11     cvCvtColor(&src2, &tmp_src, CV_BGR2GRAY); 12     for(i=0; i< normalWidth; i++){ 13         for(j=0; j<normalHeight; j++){ 14             s1 = cvGet2D(&src1, i, j); 15             s2 = cvGet2D(&tmp_src, i, j); 16             s3 = cvGet2D(&src3, i, j); 17             weight = 0.5 + (127 - s2.val[0]) * 0.002; 18             s3.val[0] = (s1.val[0] * weight) + (s3.val[0] * (1-weight)); 19             s3.val[1] = (s1.val[1] * weight) + (s3.val[1] * (1-weight)); 20             s3.val[2] = (s1.val[2] * weight) + (s3.val[2] * (1-weight)); 21             cvSet2D(&dst_src, i, j, s3); 22  } 23  } 24 }
 3、最后将正常照片和HDR照片显示初恋,并将hdr照片保存下来。
1     imshow("normal", mat2); 2     imshow("HDR", dst_mat); 3     imwrite("HDR.jpg", dst_mat); 4     cv::waitKey(0);

效果演示

 对应的效果演示如下:
    过曝图像:

正常图像

欠曝图像:

HDR图像

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM