工作之余b站充电
课程介绍
1.1课程目标
数据结构和算法这门课程无论在哪个学校的计算机专业,都是一门必修课,因为这门课程非常重要的,是编程必备
的基础,但是这门课程是一门不太好学习的课程,因为它学习起来是非常的枯燥乏味的。但是如果你想让自己的编
程能力有质的飞跃,不再停留于调用现成的API,而是追求更完美的实现,那么这门课程就是你的必修课,因为程
序设计=数据结构+算法。
通过对基础数据结构和算法的学习,能更深层次的理解程序,提升编写代码的能力,让程序的代码更优雅,性能更
高。
1.2 课程内容
1.数据结构和算法概述
2.算法分析
3.排序
4.线性表
5.符号表
6.树
7.堆
8.优先队列
9.并查集
10.图l
一、数据结构和算法概述
1.1什么是数据结构?
官方解释:
数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及他们之间的关系和操作等相关问题的学科。
大白话:
数据结构就是把数据元素按照一定的关系组织起来的集合,用来组织和存储数据
1.2数据结构分类
传统上,我们可以把数据结构分为逻辑结构和物理结构两大类。
逻辑结构分类:
逻辑结构是从具体问题中抽象出来的模型,是抽象意义上的结构,按照对象中数据元素之间的相互关系分类,也是
我们后面课题中需要关注和讨论的问题。
a.集合结构:集合结构中数据元素除了属于同一个集合外,他们之间没有任何其他的关系。

b.线性结构:线性结构中的数据元素之间存在一对一的关系

c.树形结构:树形结构中的数据元素之间存在一对多的层次关系

d.图形结构:图形结构的数据元素是多对多的关系

物理结构分类:
逻辑结构在计算机中真正的表示方式(又称为映像)称为物理结构,也可以叫做存储结构。常见的物理结构有顺序
存储结构、链式存储结构。
顺序存储结构:
把数据元素放到地址连续的存储单元里面,其数据间的逻辑关系和物理关系是一致的 ,比如我们常用的数组就是
顺序存储结构。

顺序存储结构存在一定的弊端,就像生活中排时也会有人插队也可能有人有特殊情况突然离开,这时候整个结构都
处于变化中,此时就需要链式存储结构。
链式存储结构:
是把数据元素存放在任意的存储单元里面,这组存储单元可以是连续的也可以是不连续的。此时,数据元素之间并
不能反映元素间的逻辑关系,因此在链式存储结构中引进了一个指针存放数据元素的地址,这样通过地址就可以找
到相关联数据元素的位置

1.3什么是算法?
官方解释:
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法解决问题的策略
机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
大白话:
根据一定的条件,对一些数据进行计算,得到需要的结果。
1.4算法初体验
在生活中,我们如果遇到某个问题,常常解决方案不是唯一的。
例如从西安到北京,如何去?会有不同的解决方案,我们可以坐飞机,可以坐火车,可以坐汽车,甚至可以步行,
不同的解决方案带来的时间成本和金钱成本是不一样的,比如坐飞机用的时间最少,但是费用最高,步行费用最
低,但时间最长。
再例如在北京二环内买一套四合院,如何付款?也会有不同的解决方案,可以一次性现金付清,也可以通过银行做
按揭。这两种解决方案带来的成本也不一样,一次性付清,虽然当时出的钱多,压力大,但是没有利息,按揭虽然
当时出的钱少,压力比较小,但是会有利息,而且30年的总利息几乎是贷款额度的一倍,需要多付钱。
在程序中,我们也可以用不同的算法解决相同的问题,而不同的算法的成本也是不相同的。总体上,一个优秀的算
法追求以下两个目标:
1.花最少的时间完成需求;
2.占用最少的内存空间完成需求;
下面我们用一些实际案例体验一些算法。
需求1:
计算1到100的和。
第一种解法:
public static void main(String[] args) {
int sum = 0;
int n=100;
for (int i = 1; i <= n; i++) {
sum += i;
}
System.out.println("sum=" + sum);
}
第二种解法:
public static void main(String[] args) {
int sum = 0;
int n=100;
sum = (n+1)*n/2;
System.out.println("sum="+sum);
}
第一种解法要完成需求,要完成以下几个动作:
1.定义两个整型变量;
2.执行100次加法运算;
3.打印结果到控制台;
第二种解法要完成需求,要完成以下几个动作:
1.定义两个整型变量;
2.执行1次加法运算,1次乘法运算,一次除法运算,总共3次运算;
3.打印结果到控制台;
很明显,第二种算法完成需求,花费的时间更少一些。
需求2:
计算10的阶乘
第一种解法:
public class Test {
public static void main(String[] args) {
//测试,计算10的阶乘
long result = fun1(10);
System.out.println(result);
}
//计算n的阶乘
public static long fun1(long n){
if (n==1){
return 1;
}
return n*fun1(n-1);
}
}
第二种解法:
public class Test {
public static void main(String[] args) {
//测试,计算10的阶乘
long result = fun2(10);
System.out.println(result);
}
//计算n的阶乘
public static long fun2(long n){
int result=1;
for (long i = 1; i <= n; i++) {
result*=i;
}
return result;
}
}
第一种解法,使用递归完成需求,fun1方法会执行10次,并且第一次执行未完毕,调用第二次执行,第二次执行
未完毕,调用第三次执行...最终,最多的时候,需要在栈内存同时开辟10块内存分别执行10个fun1方法。
第二种解法,使用for循环完成需求,fun2方法只会执行一次,最终,只需要在栈内存开辟一块内存执行fun2方法
即可。
很明显,第二种算法完成需求,占用的内存空间更小。
一、算法分析
前面我们已经介绍了,研究算法的最终目的就是如何花更少的时间,如何占用更少的内存去完成相同的需求,并且
也通过案例演示了不同算法之间时间耗费和空间耗费上的差异,但我们并不能将时间占用和空间占用量化,因此,
接下来我们要学习有关算法时间耗费和算法空间耗费的描述和分析。有关算法时间耗费分析,我们称之为算法的时
间复杂度分析,有关算法的空间耗费分析,我们称之为算法的空间复杂度分析。
1.1算法的时间复杂度分析
我们要计算算法时间耗费情况,首先我们得度量算法的执行时间,那么如何度量呢?
事后分析估算方法:
比较容易想到的方法就是我们把算法执行若干次,然后拿个计时器在旁边计时,这种事后统计的方法看上去的确不
错,并且也并非要我们真的拿个计算器在旁边计算,因为计算机都提供了计时的功能。这种统计方法主要是通过设
计好的测试程序和测试数据,利用计算机计时器对不同的算法编制的程序的运行时间进行比较,从而确定算法效率
的高低,但是这种方法有很大的缺陷:必须依据算法实现编制好的测试程序,通常要花费大量时间和精力,测试完
了如果发现测试的是非常糟糕的算法,那么之前所做的事情就全部白费了,并且不同的测试环境(硬件环境)的差别
导致测试的结果差异也很大。
public static void main(String[] args) {
long start = System.currentTimeMillis();
int sum = 0;
int n=100;
for (int i = 1; i <= n; i++) {
sum += i;
}
System.out.println("sum=" + sum);
long end = System.currentTimeMillis();
System.out.println(end-start);
}
事前分析估算方法:
在计算机程序编写前,依据统计方法对算法进行估算,经过总结,我们发现一个高级语言编写的程序程序在计算机
上运行所消耗的时间取决于下列因素:
1.算法采用的策略和方案;
2.编译产生的代码质量;
3.问题的输入规模(所谓的问题输入规模就是输入量的多少);
4.机器执行指令的速度;
由此可见,抛开这些与计算机硬件、软件有关的因素,一个程序的运行时间依赖于算法的好坏和问题的输入规模。
如果算法固定,那么该算法的执行时间就只和问题的输入规模有关系了。
我么再次以之前的求和案例为例,进行分析。
需求:
计算1到100的和。
第一种解法:
如果输入量为n为1,则需要计算1次;
如果输入量n为1亿,则需要计算1亿次;
public static void main(String[] args) {
int sum = 0;//执行1次
int n=100;//执行1次
for (int i = 1; i <= n; i++) {//执行了n+1次
sum += i;//执行了n次
}
System.out.println("sum=" + sum);
}
第二种解法:
如果输入量为n为1,则需要计算1次;
如果输入量n为1亿,则需要计算1次;
public static void main(String[] args) {
int sum = 0;//执行1次
int n=100;//执行1次
sum = (n+1)*n/2;//执行1次
System.out.println("sum="+sum);
}
因此,当输入规模为n时,第一种算法执行了1+1+(n+1)+n=2n+3次;第二种算法执行了1+1+1=3次。如果我们把
第一种算法的循环体看做是一个整体,忽略结束条件的判断,那么其实这两个算法运行时间的差距就是n和1的差
距。
为什么循环判断在算法1里执行了n+1次,看起来是个不小的数量,但是却可以忽略呢?我们来看下一个例子:
需求:
计算100个1+100个2+100个3+...100个100的结果
代码:
public static void main(String[] args) {
int sum=0;
int n=100;
for (int i = 1; i <=n ; i++) {
for (int j = 1; j <=n ; j++) {
sum+=i;
}
}
System.out.println("sum="+sum);
}
上面这个例子中,如果我们要精确的研究循环的条件执行了多少次,是一件很麻烦的事情,并且,由于真正计算和
的代码是内循环的循环体,所以,在研究算法的效率时,我们只考虑核心代码的执行次数,这样可以简化分析。
我们研究算法复杂度,侧重的是当输入规模不断增大时,算法的增长量的一个抽象(规律),而不是精确地定位需要
执行多少次,因为如果是这样的话,我们又得考虑回编译期优化等问题,容易主次跌倒。
我们不关心编写程序所用的语言是什么,也不关心这些程序将跑在什么样的计算机上,我们只关心它所实现的算
法。这样,不计那些循环索引的递增和循环终止的条件、变量声明、打印结果等操作,最终在分析程序的运行时间
时,最重要的是把程序看做是独立于程序设计语言的算法或一系列步骤。我们分析一个算法的运行时间,最重要的
就是把核心操作的次数和输入规模关联起来。

1.1.1 函数渐近增长
概念:
给定两个函数f(n)和g(n),如果存在一个整数N,使得对于所有的n>N,f(n)总是比g(n)大,那么我们说f(n)的增长渐近
快于g(n)。
概念似乎有点艰涩难懂,那接下来我们做几个测试。
测试一:
假设四个算法的输入规模都是n:
1.算法A1要做2n+3次操作,可以这么理解:先执行n次循环,执行完毕后,再有一个n次循环,最后有3次运算;
2.算法A2要做2n次操作;
3.算法B1要做3n+1次操作,可以这个理解:先执行n次循环,再执行一个n次循环,再执行一个n次循环,最后有1
次运算。
4.算法B2要做3n次操作;
那么,上述算法,哪一个更快一些呢?

通过数据表格,比较算法A1和算法B1:
当输入规模n=1时,A1需要执行5次,B1需要执行4次,所以A1的效率比B1的效率低;
当输入规模n=2时,A1需要执行7次,B1需要执行7次,所以A1的效率和B1的效率一样;
当输入规模n>2时,A1需要的执行次数一直比B1需要执行的次数少,所以A1的效率比B1的效率高;
所以我们可以得出结论:
当输入规模n>2时,算法A1的渐近增长小于算法B1 的渐近增长
通过观察折线图,我们发现,随着输入规模的增大,算法A1和算法A2逐渐重叠到一块,算法B1和算法B2逐渐重叠
到一块,所以我们得出结论:
随着输入规模的增大,算法的常数操作可以忽略不计
测试二:
假设四个算法的输入规模都是n:
1.算法C1需要做4n+8次操作
2.算法C2需要做n次操作
3.算法D1需要做2n^2次操作
4.算法D2需要做n^2次操作
那么上述算法,哪个更快一些?

通过数据表格,对比算法C1和算法D1:
当输入规模n<=3时,算法C1执行次数多于算法D1,因此算法C1效率低一些;
当输入规模n>3时,算法C1执行次数少于算法D1,因此,算法D2效率低一些,
所以,总体上,算法C1要优于算法D1
通过折线图,对比对比算法C1和C2:
随着输入规模的增大,算法C1和算法C2几乎重叠
通过折线图,对比算法C系列和算法D系列:
随着输入规模的增大,即使去除n^2前面的常数因子,D系列的次数要远远高于C系列。
因此,可以得出结论:
随着输入规模的增大,与最高次项相乘的常数可以忽略
测试三:
假设四个算法的输入规模都是n:
算法E1:
2n^2+3n+1;
算法E2:
n^2
算法F1:
2n^3+3n+1
算法F2:
n^3
那么上述算法,哪个更快一些?

通过数据表格,对比算法E1和算法F1:
当n=1时,算法E1和算法F1的执行次数一样;
当n>1时,算法E1的执行次数远远小于算法F1的执行次数;
所以算法E1总体上是由于算法F1的。
通过折线图我们会看到,算法F系列随着n的增长会变得特块,算法E系列随着n的增长相比较算法F来说,变得比较
慢,所以可以得出结论:
最高次项的指数大的,随着n的增长,结果也会变得增长特别快
测试四:
假设五个算法的输入规模都是n:
算法G:
n^3;
算法H:
n^2;
算法I:
n:
算法J:
logn
算法K:
1
那么上述算法,哪个效率更高呢?

通过观察数据表格和折线图,很容易可以得出结论:
算法函数中n最高次幂越小,算法效率越高
总上所述,在我们比较算法随着输入规模的增长量时,可以有以下规则:
1.算法函数中的常数可以忽略;
2.算法函数中最高次幂的常数因子可以忽略;
3.算法函数中最高次幂越小,算法效率越高。
1.1.2算法时间复杂度
1.1.2.1 大O记法
定义:
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随着n的变化情况并确定T(n)的
量级。算法的时间复杂度,就是算法的时间量度,记作:T(n)=O(f(n))。它表示随着问题规模n的增大,算法执行时间
的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称时间复杂度,其中f(n)是问题规模n的某个函数。
在这里,我们需要明确一个事情:执行次数=执行时间
用大写O()来体现算法时间复杂度的记法,我们称之为大O记法。一般情况下,随着输入规模n的增大,T(n)增长最
慢的算法为最优算法。
下面我们使用大O表示法来表示一些求和算法的时间复杂度:
算法一:
public static void main(String[] args) {
int sum = 0;//执行1次
int n=100;//执行1次
sum = (n+1)*n/2;//执行1次
System.out.println("sum="+sum);
}
算法二:
public static void main(String[] args) {
int sum = 0;//执行1次
int n=100;//执行1次
for (int i = 1; i <= n; i++) {
sum += i;//执行了n次
}
System.out.println("sum=" + sum);
}
算法三:
public static void main(String[] args) {
int sum=0;//执行1次
int n=100;//执行1次
for (int i = 1; i <=n ; i++) {
for (int j = 1; j <=n ; j++) {
sum+=i;//执行n^2次
}
}
System.out.println("sum="+sum);
}
如果忽略判断条件的执行次数和输出语句的执行次数,那么当输入规模为n时,以上算法执行的次数分别为:
算法一:3次
算法二:n+3次
算法三:n^2+2次
如果用大O记法表示上述每个算法的时间复杂度,应该如何表示呢?基于我们对函数渐近增长的分析,推导大O阶
的表示法有以下几个规则可以使用:
1.用常数1取代运行时间中的所有加法常数;
2.在修改后的运行次数中,只保留高阶项;
3.如果最高阶项存在,且常数因子不为1,则去除与这个项相乘的常数;
所以,上述算法的大O记法分别为:
算法一:O(1)
算法二:O(n)
算法三:O(n^2)
1.1.2.2常见的大O阶
1.线性阶
一般含有非嵌套循环涉及线性阶,线性阶就是随着输入规模的扩大,对应计算次数呈直线增长,例如:
public static void main(String[] args) {
int sum = 0;
int n=100;
for (int i = 1; i <= n; i++) {
sum += i;
}
System.out.println("sum=" + sum);
}
上面这段代码,它的循环的时间复杂度为O(n),因为循环体中的代码需要执行n次
2.平方阶
一般嵌套循环属于这种时间复杂度
public static void main(String[] args) {
int sum=0,n=100;
for (int i = 1; i <=n ; i++) {
for (int j = 1; j <=n ; j++) {
sum+=i;
}
}
System.out.println(sum);
}
上面这段代码,n=100,也就是说,外层循环每执行一次,内层循环就执行100次,那总共程序想要从这两个循环
中出来,就需要执行100*100次,也就是n的平方次,所以这段代码的时间复杂度是O(n^2).
3.立方阶
一般三层嵌套循环属于这种时间复杂度
public static void main(String[] args) {
int x=0,n=100;
for (int i = 1; i <=n ; i++) {
for (int j = i; j <=n ; j++) {
for (int j = i; j <=n ; j++) {
x++;
}
}
}
System.out.println(x);
}
上面这段代码,n=100,也就是说,外层循环每执行一次,中间循环循环就执行100次,中间循环每执行一次,最
内层循环需要执行100次,那总共程序想要从这三个循环中出来,就需要执行100100100次,也就是n的立方,所
以这段代码的时间复杂度是O(n^3).
4.对数阶
对数,属于高中数学的内容,我们分析程序以程序为主,数学为辅,所以不用过分担心。
int i=1,n=100;
while(i<n){
i = i*2;
}
由于每次i*2之后,就距离n更近一步,假设有x个2相乘后大于n,则会退出循环。由于是2^x=n,得到x=log(2)n,所
以这个循环的时间复杂度为O(logn);
对于对数阶,由于随着输入规模n的增大,不管底数为多少,他们的增长趋势是一样的,所以我们会忽略底数。

5.常数阶
一般不涉及循环操作的都是常数阶,因为它不会随着n的增长而增加操作次数。例如:
public static void main(String[] args) {
int n=100;
int i=n+2;
System.out.println(i);
}
上述代码,不管输入规模n是多少,都执行2次,根据大O推导法则,常数用1来替换,所以上述代码的时间复杂度
为O(1)
下面是对常见时间复杂度的一个总结:

他们的复杂程度从低到高依次为:
O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3)
根据前面的折线图分析,我们会发现,从平方阶开始,随着输入规模的增大,时间成本会急剧增大,所以,我们的
算法,尽可能的追求的是O(1),O(logn),O(n),O(nlogn)这几种时间复杂度,而如果发现算法的时间复杂度为平方阶、
立方阶或者更复杂的,那我们可以分为这种算法是不可取的,需要优化。
1.1.2.3 函数调用的时间复杂度分析
之前,我们分析的都是单个函数内,算法代码的时间复杂度,接下来我们分析函数调用过程中时间复杂度。
案例一:
public static void main(String[] args) {
int n=100;
for (int i = 0; i < n; i++) {
show(i);
}
}
private static void show(int i) {
System.out.println(i);
}
在main方法中,有一个for循环,循环体调用了show方法,由于show方法内部只执行了一行代码,所以show方法
的时间复杂度为O(1),那main方法的时间复杂度就是O(n)
案例二:
public static void main(String[] args) {
int n=100;
for (int i = 0; i < n; i++) {
show(i);
}
}
private static void show(int i) {
for (int j = 0; j < i; i++) {
System.out.println(i);
}
}
在main方法中,有一个for循环,循环体调用了show方法,由于show方法内部也有一个for循环,所以show方法
的时间复杂度为O(n),那main方法的时间复杂度为O(n^2)
案例三:
public static void main(String[] args) {
int n=100;
show(n);
for (int i = 0; i < n; i++) {
show(i);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
System.out.println(j);
}
}
}
private static void show(int i) {
for (int j = 0; j < i; i++) {
System.out.println(i);
}
}
在show方法中,有一个for循环,所以show方法的时间复杂度为O(n),在main方法中,show(n)这行代码内部执行
的次数为n,第一个for循环内调用了show方法,所以其执行次数为n^2,第二个嵌套for循环内只执行了一行代码,
所以其执行次数为n^2,那么main方法总执行次数为n+n^2+n^2=2n^2+n。根据大O推导规则,去掉n保留最高阶
项,并去掉最高阶项的常数因子2,所以最终main方法的时间复杂度为O(n^2)
1.1.2.4 最坏情况
从心理学角度讲,每个人对发生的事情都会有一个预期,比如看到半杯水,有人会说:哇哦,还有半杯水哦!但也
有人会说:天哪,只有半杯水了。一般人处于一种对未来失败的担忧,而在预期的时候趋向做最坏的打算,这样即
使最糟糕的结果出现,当事人也有了心理准备,比较容易接受结果。假如最糟糕的结果并没有出现,当事人会很快乐。
算法分析也是类似,假如有一个需求:
有一个存储了n个随机数字的数组,请从中查找出指定的数字。
public int search(int num){
int[] arr={11,10,8,9,7,22,23,0};
for (int i = 0; i < arr.length; i++) {
if (num==arr[i]){
return i;
}
}
return -1;
}
最好情况:
查找的第一个数字就是期望的数字,那么算法的时间复杂度为O(1)
最坏情况:
查找的最后一个数字,才是期望的数字,那么算法的时间复杂度为O(n)
平均情况:
任何数字查找的平均成本是O(n/2)
最坏情况是一种保证,在应用中,这是一种最基本的保障,即使在最坏情况下,也能够正常提供服务,所以,除非
特别指定,我们提到的运行时间都指的是最坏情况下的运行时间。
1.2 算法的空间复杂度分析
计算机的软硬件都经历了一个比较漫长的演变史,作为为运算提供环境的内存,更是如此,从早些时候的512k,经
历了1M,2M,4M...等,发展到现在的8G,甚至16G和32G,所以早期,算法在运行过程中对内存的占用情况也是
一个经常需要考虑的问题。我么可以用算法的空间复杂度来描述算法对内存的占用。
1.2.1java中常见内存占用
1.基本数据类型内存占用情况:

2.计算机访问内存的方式都是一次一个字节

3.一个引用(机器地址)需要8个字节表示:
例如: Date date = new Date(),则date这个变量需要占用8个字节来表示
4.创建一个对象,比如new Date(),除了Date对象内部存储的数据(例如年月日等信息)占用的内存,该对象本身也
有内存开销,每个对象的自身开销是16个字节,用来保存对象的头信息。
5.一般内存的使用,如果不够8个字节,都会被自动填充为8字节:

6.java中数组被被限定为对象,他们一般都会因为记录长度而需要额外的内存,一个原始数据类型的数组一般需要
24字节的头信息(16个自己的对象开销,4字节用于保存长度以及4个填充字节)再加上保存值所需的内存。
1.2.2 算法的空间复杂度
了解了java的内存最基本的机制,就能够有效帮助我们估计大量程序的内存使用情况。
算法的空间复杂度计算公式记作:S(n)=O(f(n)),其中n为输入规模,f(n)为语句关于n所占存储空间的函数。
案例:
对指定的数组元素进行反转,并返回反转的内容。
解法一:
public static int[] reverse1(int[] arr){
int n=arr.length;//申请4个字节
int temp;//申请4个字节
for(int start=0,end=n-1;start<=end;start++,end--){
temp=arr[start];
arr[start]=arr[end];
arr[end]=temp;
}
return arr;
}
解法二:
public static int[] reverse2(int[] arr){
int n=arr.length;//申请4个字节
int[] temp=new int[n];//申请n*4个字节+数组自身头信息开销24个字节
for (int i = n-1; i >=0; i--) {
temp[n-1-i]=arr[i];
}
return temp;
}
忽略判断条件占用的内存,我们得出的内存占用情况如下:
算法一:
不管传入的数组大小为多少,始终额外申请4+4=8个字节;
算法二:
4+4n+24=4n+28;
根据大O推导法则,算法一的空间复杂度为O(1),算法二的空间复杂度为O(n),所以从空间占用的角度讲,算法一要
优于算法二。
由于java中有内存垃圾回收机制,并且jvm对程序的内存占用也有优化(例如即时编译),我们无法精确的评估一
个java程序的内存占用情况,但是了解了java的基本内存占用,使我们可以对java程序的内存占用情况进行估算。
由于现在的计算机设备内存一般都比较大,基本上个人计算机都是4G起步,大的可以达到32G,所以内存占用一般
情况下并不是我们算法的瓶颈,普通情况下直接说复杂度,默认为算法的时间复杂度。
但是,如果你做的程序是嵌入式开发,尤其是一些传感器设备上的内置程序,由于这些设备的内存很小,一般为几
kb,这个时候对算法的空间复杂度就有要求了,但是一般做java开发的,基本上都是服务器开发,一般不存在这样
的问题。
一、简单排序
在我们的程序中,排序是非常常见的一种需求,提供一些数据元素,把这些数据元素按照一定的规则进行排序。比
如查询一些订单,按照订单的日期进行排序;再比如查询一些商品,按照商品的价格进行排序等等。所以,接下来
我们要学习一些常见的排序算法。
在java的开发工具包jdk中,已经给我们提供了很多数据结构与算法的实现,比如List,Set,Map,Math等等,都
是以API的方式提供,这种方式的好处在于一次编写,多处使用。我们借鉴jdk的方式,也把算法封装到某个类中,
那如果是这样,在我们写java代码之前,就需要先进行API的设计,设计好之后,再对这些API进行实现。
就比如我们先设计一套API如下:

然后再使用java代码去实现它。以后我们讲任何数据结构与算法都是以这种方式讲解
1.1 Comparable接口介绍
由于我们这里要讲排序,所以肯定会在元素之间进行比较,而Java提供了一个接口Comparable就是用来定义排序
规则的,在这里我们以案例的形式对Comparable接口做一个简单的回顾。
需求:
1.定义一个学生类Student,具有年龄age和姓名username两个属性,并通过Comparable接口提供比较规则;
2.定义测试类Test,在测试类Test中定义测试方法Comparable getMax(Comparable c1,Comparable c2)完成测试
package cn.itcast.algorithm.sort; //1.定义一个学生类Student,具有年龄age和姓名username两个属性,并通过Comparable接口提供比较规则; public class Student implements Comparable<Student>{ private String username; private int age; public String getUsername() { return username; } public void setUsername(String username) { this.username = username; } public int getAge() { return age; } public void setAge(int age) { this.age = age; } @Override public String toString() { return "Student{" + "username='" + username + '\'' + ", age=" + age + '}'; } @Override public int compareTo(Student o) { return this.getAge()-o.getAge(); } }
package cn.itcast.algorithm.test; import cn.itcast.algorithm.sort.Student; //2.定义测试类Test,在测试类Test中定义测试方法Comparable getMax(Comparable c1,Comparable c2)完成测试 public class TestComparable { public static void main(String[] args) { //创建两个Student对象,并调用getMax方法,完成测试 Student s1 = new Student(); s1.setUsername("张三"); s1.setAge(18); Student s2 = new Student(); s2.setUsername("李四"); s2.setAge(20); Comparable max = getMax(s1, s2); System.out.println(max); } public static Comparable getMax(Comparable c1,Comparable c2){ int result = c1.compareTo(c2); //如果result<0,则c1比c2小; //如果result>0,则c1比c2大; //如果result==0,则c1和c2一样大; if (result>=0){ return c1; }else{ return c2; } } }
1.2 冒泡排序
冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。
需求:
排序前:{4,5,6,3,2,1}
排序后:{1,2,3,4,5,6}
排序原理:
1. 比较相邻的元素。如果前一个元素比后一个元素大,就交换这两个元素的位置。
2. 对每一对相邻元素做同样的工作,从开始第一对元素到结尾的最后一对元素。最终最后位置的元素就是最大值。

冒泡排序API设计:

冒泡排序的代码实现:
package cn.itcast.algorithm.sort; public class Bubble { /* 对数组a中的元素进行排序 */ public static void sort(Comparable[] a){ for(int i=a.length-1;i>0;i--){ for(int j=0;j<i;j++){ //{6,5,4,3,2,1} //比较索引j和索引j+1处的值 if (greater(a[j],a[j+1])){ exch(a,j,j+1); } } } } /* 比较v元素是否大于w元素 */ private static boolean greater(Comparable v,Comparable w){ return v.compareTo(w)>0; } /* 数组元素i和j交换位置 */ private static void exch(Comparable[] a,int i,int j){ Comparable temp; temp = a[i]; a[i]=a[j]; a[j]=temp; } }
package cn.itcast.algorithm.test; import cn.itcast.algorithm.sort.Bubble; import java.util.Arrays; public class BubbleTest { public static void main(String[] args) { Integer[] arr = {4,5,6,3,2,1}; Bubble.sort(arr); System.out.println(Arrays.toString(arr));//{1,2,3,4,5,6} } }
我们分析冒泡排序的时间复杂度,主要分析一下内层循环体的执行次数即可。
在最坏情况下,也就是假如要排序的元素为{6,5,4,3,2,1}逆序,那么:
元素比较的次数为:
(N-1)+(N-2)+(N-3)+...+2+1=((N-1)+1)*(N-1)/2=N^2/2-N/2;
元素交换的次数为:
(N-1)+(N-2)+(N-3)+...+2+1=((N-1)+1)*(N-1)/2=N^2/2-N/2;
总执行次数为:
(N^2/2-N/2)+(N^2/2-N/2)=N^2-N;
按照大O推导法则,保留函数中的最高阶项那么最终冒泡排序的时间复杂度为O(N^2).
1.3 选择排序
选择排序是一种更加简单直观的排序方法。
需求:
排序前:{4,6,8,7,9,2,10,1}
排序后:{1,2,4,5,7,8,9,10}
排序原理:
1.每一次遍历的过程中,都假定第一个索引处的元素是最小值,和其他索引处的值依次进行比较,如果当前索引处
的值大于其他某个索引处的值,则假定其他某个索引出的值为最小值,最后可以找到最小值所在的索引
2.交换第一个索引处和最小值所在的索引处的值

选择排序API设计:

选择排序的代码实现:
package cn.itcast.algorithm.sort; public class Selection { /* 对数组a中的元素进行排序 */ public static void sort(Comparable[] a){ for(int i=0;i<=a.length-2;i++){ //定义一个变量,记录最小元素所在的索引,默认为参与选择排序的第一个元素所在的位置 int minIndex = i; for(int j=i+1;j<a.length;j++){ //需要比较最小索引minIndex处的值和j索引处的值; if (greater(a[minIndex],a[j])){ minIndex=j; } } //交换最小元素所在索引minIndex处的值和索引i处的值 exch(a,i,minIndex); } } /* 比较v元素是否大于w元素 */ private static boolean greater(Comparable v,Comparable w){ return v.compareTo(w)>0; } /* 数组元素i和j交换位置 */ private static void exch(Comparable[] a,int i,int j){ Comparable temp; temp = a[i]; a[i]=a[j]; a[j]=temp; } }
package cn.itcast.algorithm.test; import cn.itcast.algorithm.sort.Selection; import java.util.Arrays; public class SelectionTest { public static void main(String[] args) { //原始数据 Integer[] a = {4,6,8,7,9,2,10,1}; Selection.sort(a); System.out.println(Arrays.toString(a));//{1,2,4,5,7,8,9,10} } }
选择排序的时间复杂度分析:
选择排序使用了双层for循环,其中外层循环完成了数据交换,内层循环完成了数据比较,所以我们分别统计数据
交换次数和数据比较次数:
数据比较次数:
(N-1)+(N-2)+(N-3)+...+2+1=((N-1)+1)*(N-1)/2=N^2/2-N/2;
数据交换次数:
N-1
时间复杂度:N^2/2-N/2+(N-1)=N^2/2+N/2-1;
根据大O推导法则,保留最高阶项,去除常数因子,时间复杂度为O(N^2);
1.4 插入排序
插入排序(Insertion sort)是一种简单直观且稳定的排序算法。
插入排序的工作方式非常像人们排序一手扑克牌一样。开始时,我们的左手为空并且桌子上的牌面朝下。然后,我
们每次从桌子上拿走一张牌并将它插入左手中正确的位置。为了找到一张牌的正确位置,我们从右到左将它与已在
手中的每张牌进行比较,如下图所示:

需求:
排序前:{4,3,2,10,12,1,5,6}
排序后:{1,2,3,4,5,6,10,12}
排序原理:
1.把所有的元素分为两组,已经排序的和未排序的;
2.找到未排序的组中的第一个元素,向已经排序的组中进行插入;
3.倒叙遍历已经排序的元素,依次和待插入的元素进行比较,直到找到一个元素小于等于待插入元素,那么就把待
插入元素放到这个位置,其他的元素向后移动一位;

插入排序API设计:

插入排序代码实现:
package cn.itcast.algorithm.sort; public class Insertion { /* 对数组a中的元素进行排序 */ public static void sort(Comparable[] a){ for(int i=1;i<a.length;i++){ for(int j=i;j>0;j--){ //比较索引j处的值和索引j-1处的值,如果索引j-1处的值比索引j处的值大,则交换数据,如果不大,那么就找到合适的位置了,退出循环即可; if (greater(a[j-1],a[j])){ exch(a,j-1,j); }else{ break; } } } } /* 比较v元素是否大于w元素 */ private static boolean greater(Comparable v,Comparable w){ return v.compareTo(w)>0; } /* 数组元素i和j交换位置 */ private static void exch(Comparable[] a,int i,int j){ Comparable temp; temp = a[i]; a[i]=a[j]; a[j]=temp; } }
插入排序的时间复杂度分析
插入排序使用了双层for循环,其中内层循环的循环体是真正完成排序的代码,所以,我们分析插入排序的时间复
杂度,主要分析一下内层循环体的执行次数即可。
最坏情况,也就是待排序的数组元素为{12,10,6,5,4,3,2,1},那么:
比较的次数为:
(N-1)+(N-2)+(N-3)+...+2+1=((N-1)+1)*(N-1)/2=N^2/2-N/2;
交换的次数为:
(N-1)+(N-2)+(N-3)+...+2+1=((N-1)+1)*(N-1)/2=N^2/2-N/2;
总执行次数为:
(N^2/2-N/2)+(N^2/2-N/2)=N^2-N;
按照大O推导法则,保留函数中的最高阶项那么最终插入排序的时间复杂度为O(N^2).
二、高级排序
之前我们学习过基础排序,包括冒泡排序,选择排序还有插入排序,并且对他们在最坏情况下的时间复杂度做了分
析,发现都是O(N^2),而平方阶通过我们之前学习算法分析我们知道,随着输入规模的增大,时间成本将急剧上
升,所以这些基本排序方法不能处理更大规模的问题,接下来我们学习一些高级的排序算法,争取降低算法的时间
复杂度最高阶次幂。
2.1希尔排序
希尔排序是插入排序的一种,又称“缩小增量排序”,是插入排序算法的一种更高效的改进版本。
前面学习插入排序的时候,我们会发现一个很不友好的事儿,如果已排序的分组元素为{2,5,7,9,10},未排序的分组
元素为{1,8},那么下一个待插入元素为1,我们需要拿着1从后往前,依次和10,9,7,5,2进行交换位置,才能完成真
正的插入,每次交换只能和相邻的元素交换位置。那如果我们要提高效率,直观的想法就是一次交换,能把1放到
更前面的位置,比如一次交换就能把1插到2和5之间,这样一次交换1就向前走了5个位置,可以减少交换的次数,
这样的需求如何实现呢?接下来我们来看看希尔排序的原理。
需求:
排序前:{9,1,2,5,7,4,8,6,3,5}
排序后:{1,2,3,4,5,5,6,7,8,9}
排序原理:
1.选定一个增长量h,按照增长量h作为数据分组的依据,对数据进行分组;
2.对分好组的每一组数据完成插入排序;
3.减小增长量,最小减为1,重复第二步操作。

增长量h的确定:增长量h的值每一固定的规则,我们这里采用以下规则:
int h=1 while(h<5){ h=2h+1;//3,7 } //循环结束后我们就可以确定h的最大值; h的减小规则为: h=h/2
希尔排序的API设计:

希尔排序的代码实现:
package cn.itcast.algorithm.sort; public class Shell { /* 对数组a中的元素进行排序 */ public static void sort(Comparable[] a){ //1.根据数组a的长度,确定增长量h的初始值; int h = 1; while(h<a.length/2){ h=2*h+1; } //2.希尔排序 while(h>=1){ //排序 //2.1.找到待插入的元素 for (int i=h;i<a.length;i++){ //2.2把待插入的元素插入到有序数列中 for (int j=i;j>=h;j-=h){ //待插入的元素是a[j],比较a[j]和a[j-h] if (greater(a[j-h],a[j])){ //交换元素 exch(a,j-h,j); }else{ //待插入元素已经找到了合适的位置,结束循环; break; } } } //减小h的值 h= h/2; } } /* 比较v元素是否大于w元素 */ private static boolean greater(Comparable v,Comparable w){ return v.compareTo(w)>0; } /* 数组元素i和j交换位置 */ private static void exch(Comparable[] a,int i,int j){ Comparable temp; temp = a[i]; a[i]=a[j]; a[j]=temp; } }
package cn.itcast.algorithm.test; import cn.itcast.algorithm.sort.Shell; import java.util.Arrays; public class ShellTest { public static void main(String[] args) { Integer[] a = {9,1,2,5,7,4,8,6,3,5}; Shell.sort(a); System.out.println(Arrays.toString(a));//{1,2,3,4,5,5,6,7,8,9} } }
希尔排序的时间复杂度分析
在希尔排序中,增长量h并没有固定的规则,有很多论文研究了各种不同的递增序列,但都无法证明某个序列是最
好的,对于希尔排序的时间复杂度分析,已经超出了我们课程设计的范畴,所以在这里就不做分析了。
我们可以使用事后分析法对希尔排序和插入排序做性能比较。
在资料的测试数据文件夹下有一个reverse_shell_insertion.txt文件,里面存放的是从100000到1的逆向数据,我们
可以根据这个批量数据完成测试。测试的思想:在执行排序前前记录一个时间,在排序完成后记录一个时间,两个
时间的时间差就是排序的耗时。
希尔排序和插入排序性能比较测试代码:
package cn.itcast.algorithm.test; import cn.itcast.algorithm.sort.Insertion; import cn.itcast.algorithm.sort.Merge; import cn.itcast.algorithm.sort.Shell; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; public class SortCompare { //调用不同的测试方法,完成测试 public static void main(String[] args) throws Exception{ //1.创建一个ArrayList集合,保存读取出来的整数 ArrayList<Integer> list = new ArrayList<>(); //2.创建缓存读取流BufferedReader,读取数据,并存储到ArrayList中; BufferedReader reader = new BufferedReader(new InputStreamReader(SortCompare.class.getClassLoader().getResourceAsStream("reverse_arr.txt"))); String line=null; while((line=reader.readLine())!=null){ //line是字符串,把line转换成Integer,存储到集合中 int i = Integer.parseInt(line); list.add(i); } reader.close(); //3.把ArrayList集合转换成数组 Integer[] a = new Integer[list.size()]; list.toArray(a); //4.调用测试代码完成测试 //testInsertion(a);//37499毫秒 testShell(a);//30毫秒 // testMerge(a);//70毫秒 } //测试希尔排序 public static void testShell(Integer[] a){ //1.获取执行之前的时间 long start = System.currentTimeMillis(); //2.执行算法代码 Shell.sort(a); //3.获取执行之后的时间 long end = System.currentTimeMillis(); //4.算出程序执行的时间并输出 System.out.println("希尔排序执行的时间为:"+(end-start)+"毫秒"); } //测试插入排序 public static void testInsertion(Integer[] a){ //1.获取执行之前的时间 long start = System.currentTimeMillis(); //2.执行算法代码 Insertion.sort(a); //3.获取执行之后的时间 long end = System.currentTimeMillis(); //4.算出程序执行的时间并输出 System.out.println("插入排序执行的时间为:"+(end-start)+"毫秒"); } //测试归并排序 public static void testMerge(Integer[] a){ //1.获取执行之前的时间 long start = System.currentTimeMillis(); //2.执行算法代码 Merge.sort(a); //3.获取执行之后的时间 long end = System.currentTimeMillis(); //4.算出程序执行的时间并输出 System.out.println("归并排序执行的时间为:"+(end-start)+"毫秒"); } }
通过测试发现,在处理大批量数据时,希尔排序的性能确实高于插入排序。
2.2 归并排序
2.2.1 递归
正式学习归并排序之前,我们得先学习一下递归算法。
定义:定义方法时,在方法内部调用方法本身,称之为递归.
public void show(){ System.out.println("aaaa"); show(); }
作用:
它通常把一个大型复杂的问题,层层转换为一个与原问题相似的,规模较小的问题来求解。递归策略只需要少量的
程序就可以描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。
注意事项:
在递归中,不能无限制的调用自己,必须要有边界条件,能够让递归结束,因为每一次递归调用都会在栈内存开辟
新的空间,重新执行方法,如果递归的层级太深,很容易造成栈内存溢出。

需求:
请定义一个方法,使用递归完成求N的阶乘;
分析:
1!: 1
2!: 2*1=2*1!
3!: 3*2*1=3*2!
4!: 4*3*2*1=4*3!
...
n!: n*(n-1)*(n-2)...*2*1=n*(n-1)!
所以,假设有一个方法factorial(n)用来求n的阶乘,那么n的阶乘还可以表示为n*factorial(n-1)
代码实现:
public class Test {
public static void main(String[] args) throws Exception {
int result = factorial(5);
System.out.println(result);
}
public static int factorial(int n){
if (n==1){
return 1;
}
return n*factorial(n-1);
}
}
2.2.2 归并排序
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子
序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序
表,称为二路归并。
需求:
排序前:{8,4,5,7,1,3,6,2}
排序后:{1,2,3,4,5,6,7,8}
排序原理:
1.尽可能的一组数据拆分成两个元素相等的子组,并对每一个子组继续拆分,直到拆分后的每个子组的元素个数是
1为止。
2.将相邻的两个子组进行合并成一个有序的大组;
3.不断的重复步骤2,直到最终只有一个组为止。

归并排序API设计:

归并原理:

归并排序代码实现:
package cn.itcast.algorithm.sort; public class Merge { //归并所需要的辅助数组 private static Comparable[] assist; /* 比较v元素是否小于w元素 */ private static boolean less(Comparable v, Comparable w) { return v.compareTo(w)<0; } /* 数组元素i和j交换位置 */ private static void exch(Comparable[] a, int i, int j) { Comparable t = a[i]; a[i] = a[j]; a[j] = t; } /* 对数组a中的元素进行排序 */ public static void sort(Comparable[] a) { //1.初始化辅助数组assist; assist = new Comparable[a.length]; //2.定义一个lo变量,和hi变量,分别记录数组中最小的索引和最大的索引; int lo=0; int hi=a.length-1; //3.调用sort重载方法完成数组a中,从索引lo到索引hi的元素的排序 sort(a,lo,hi); } /* 对数组a中从lo到hi的元素进行排序 */ private static void sort(Comparable[] a, int lo, int hi) { //做安全性校验; if (hi<=lo){ return; } //对lo到hi之间的数据进行分为两个组 int mid = lo+(hi-lo)/2;// 5,9 mid=7 //分别对每一组数据进行排序 sort(a,lo,mid); sort(a,mid+1,hi); //再把两个组中的数据进行归并 merge(a,lo,mid,hi); } /* 对数组中,从lo到mid为一组,从mid+1到hi为一组,对这两组数据进行归并 */ private static void merge(Comparable[] a, int lo, int mid, int hi) { //定义三个指针 int i=lo; int p1=lo; int p2=mid+1; //遍历,移动p1指针和p2指针,比较对应索引处的值,找出小的那个,放到辅助数组的对应索引处 while(p1<=mid && p2<=hi){ //比较对应索引处的值 if (less(a[p1],a[p2])){ assist[i++] = a[p1++]; }else{ assist[i++]=a[p2++]; } } //遍历,如果p1的指针没有走完,那么顺序移动p1指针,把对应的元素放到辅助数组的对应索引处 while(p1<=mid){ assist[i++]=a[p1++]; } //遍历,如果p2的指针没有走完,那么顺序移动p2指针,把对应的元素放到辅助数组的对应索引处 while(p2<=hi){ assist[i++]=a[p2++]; } //把辅助数组中的元素拷贝到原数组中 for(int index=lo;index<=hi;index++){ a[index]=assist[index]; } } }
package cn.itcast.algorithm.test; import cn.itcast.algorithm.sort.Merge; import java.util.Arrays; public class MergeTest { public static void main(String[] args) { Integer[] a = {8,4,5,7,1,3,6,2}; Merge.sort(a); System.out.println(Arrays.toString(a));//{1,2,3,4,5,6,7,8} } }
归并排序时间复杂度分析:
归并排序是分治思想的最典型的例子,上面的算法中,对a[lo...hi]进行排序,先将它分为a[lo...mid]和a[mid+1...hi]
两部分,分别通过递归调用将他们单独排序,最后将有序的子数组归并为最终的排序结果。该递归的出口在于如果
一个数组不能再被分为两个子数组,那么就会执行merge进行归并,在归并的时候判断元素的大小进行排序。

用树状图来描述归并,如果一个数组有8个元素,那么它将每次除以2找最小的子数组,共拆log8次,值为3,所以
树共有3层,那么自顶向下第k层有2^k个子数组,每个数组的长度为2^(3-k),归并最多需要2^(3-k)次比较。因此每层
的比较次数为 2^k * 2^(3-k)=2^3,那么3层总共为 3*2^3。
假设元素的个数为n,那么使用归并排序拆分的次数为log2(n),所以共log2(n)层,那么使用log2(n)替换上面3*2^3中
的3这个层数,最终得出的归并排序的时间复杂度为:log2(n)* 2^(log2(n))=log2(n)*n,根据大O推导法则,忽略底
数,最终归并排序的时间复杂度为O(nlogn);
归并排序的缺点:
需要申请额外的数组空间,导致空间复杂度提升,是典型的以空间换时间的操作。
归并排序与希尔排序性能测试:
之前我们通过测试可以知道希尔排序的性能是由于插入排序的,那现在学习了归并排序后,归并排序的效率与希尔
排序的效率哪个高呢?我们使用同样的测试方式来完成一样这两个排序算法之间的性能比较。
在资料的测试数据文件夹下有一个reverse_arr.txt文件,里面存放的是从1000000到1的逆向数据,我们可以根据
这个批量数据完成测试。测试的思想:在执行排序前前记录一个时间,在排序完成后记录一个时间,两个时间的时
间差就是排序的耗时。
希尔排序和插入排序性能比较测试代码:
package cn.itcast.algorithm.test; import cn.itcast.algorithm.sort.Insertion; import cn.itcast.algorithm.sort.Merge; import cn.itcast.algorithm.sort.Shell; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; public class SortCompare { //调用不同的测试方法,完成测试 public static void main(String[] args) throws Exception{ //1.创建一个ArrayList集合,保存读取出来的整数 ArrayList<Integer> list = new ArrayList<>(); //2.创建缓存读取流BufferedReader,读取数据,并存储到ArrayList中; BufferedReader reader = new BufferedReader(new InputStreamReader(SortCompare.class.getClassLoader().getResourceAsStream("reverse_arr.txt"))); String line=null; while((line=reader.readLine())!=null){ //line是字符串,把line转换成Integer,存储到集合中 int i = Integer.parseInt(line); list.add(i); } reader.close(); //3.把ArrayList集合转换成数组 Integer[] a = new Integer[list.size()]; list.toArray(a); //4.调用测试代码完成测试 //testInsertion(a);//37499毫秒 testShell(a);//30毫秒 // testMerge(a);//70毫秒 } //测试希尔排序 public static void testShell(Integer[] a){ //1.获取执行之前的时间 long start = System.currentTimeMillis(); //2.执行算法代码 Shell.sort(a); //3.获取执行之后的时间 long end = System.currentTimeMillis(); //4.算出程序执行的时间并输出 System.out.println("希尔排序执行的时间为:"+(end-start)+"毫秒"); } //测试插入排序 public static void testInsertion(Integer[] a){ //1.获取执行之前的时间 long start = System.currentTimeMillis(); //2.执行算法代码 Insertion.sort(a); //3.获取执行之后的时间 long end = System.currentTimeMillis(); //4.算出程序执行的时间并输出 System.out.println("插入排序执行的时间为:"+(end-start)+"毫秒"); } //测试归并排序 public static void testMerge(Integer[] a){ //1.获取执行之前的时间 long start = System.currentTimeMillis(); //2.执行算法代码 Merge.sort(a); //3.获取执行之后的时间 long end = System.currentTimeMillis(); //4.算出程序执行的时间并输出 System.out.println("归并排序执行的时间为:"+(end-start)+"毫秒"); } }
通过测试,发现希尔排序和归并排序在处理大批量数据时差别不是很大。
2.3 快速排序
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一
部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序
过程可以递归进行,以此达到整个数据变成有序序列。
需求:
排序前:{6, 1, 2, 7, 9, 3, 4, 5, 8}
排序后:{1, 2, 3, 4, 5, 6, 7, 8, 9}
排序原理:
1.首先设定一个分界值,通过该分界值将数组分成左右两部分;
2.将大于或等于分界值的数据放到到数组右边,小于分界值的数据放到数组的左边。此时左边部分中各元素都小于
或等于分界值,而右边部分中各元素都大于或等于分界值;
3.然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两
部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
4.重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当
左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了。

快速排序API设计:

切分原理:
把一个数组切分成两个子数组的基本思想:
1.找一个基准值,用两个指针分别指向数组的头部和尾部;
2.先从尾部向头部开始搜索一个比基准值小的元素,搜索到即停止,并记录指针的位置;
3.再从头部向尾部开始搜索一个比基准值大的元素,搜索到即停止,并记录指针的位置;
4.交换当前左边指针位置和右边指针位置的元素;
5.重复2,3,4步骤,直到左边指针的值大于右边指针的值停止。

快速排序代码实现:
package cn.itcast.algorithm.sort; public class Quick { /* 比较v元素是否小于w元素 */ private static boolean less(Comparable v, Comparable w) { return v.compareTo(w) < 0; } /* 数组元素i和j交换位置 */ private static void exch(Comparable[] a, int i, int j) { Comparable t = a[i]; a[i] = a[j]; a[j] = t; } //对数组内的元素进行排序 public static void sort(Comparable[] a) { int lo = 0; int hi = a.length-1; sort(a,lo,hi); } //对数组a中从索引lo到索引hi之间的元素进行排序 private static void sort(Comparable[] a, int lo, int hi) { //安全性校验 if (hi<=lo){ return; } //需要对数组中lo索引到hi索引处的元素进行分组(左子组和右子组); int partition = partition(a, lo, hi);//返回的是分组的分界值所在的索引,分界值位置变换后的索引 //让左子组有序 sort(a,lo,partition-1); //让右子组有序 sort(a,partition+1,hi); } //对数组a中,从索引 lo到索引 hi之间的元素进行分组,并返回分组界限对应的索引 public static int partition(Comparable[] a, int lo, int hi) { //确定分界值 Comparable key = a[lo]; //定义两个指针,分别指向待切分元素的最小索引处和最大索引处的下一个位置 int left=lo; int right=hi+1; //切分 while(true){ //先从右往左扫描,移动right指针,找到一个比分界值小的元素,停止 while(less(key,a[--right])){ if (right==lo){ break; } } //再从左往右扫描,移动left指针,找到一个比分界值大的元素,停止 while(less(a[++left],key)){ if (left==hi){ break; } } //判断 left>=right,如果是,则证明元素扫描完毕,结束循环,如果不是,则交换元素即可 if (left>=right){ break; }else{ exch(a,left,right); } } //交换分界值 exch(a,lo,right); return right; } }
package cn.itcast.algorithm.test; import cn.itcast.algorithm.sort.Quick; import java.util.Arrays; public class QuickTest { public static void main(String[] args) { Integer[] a= {6, 1, 2, 7, 9, 3, 4, 5, 8}; Quick.sort(a); System.out.println(Arrays.toString(a));//{1, 2, 3, 4, 5, 6, 7, 8, 9} } }
快速排序和归并排序的区别:
快速排序是另外一种分治的排序算法,它将一个数组分成两个子数组,将两部分独立的排序。快速排序和归并排序
是互补的:归并排序将数组分成两个子数组分别排序,并将有序的子数组归并从而将整个数组排序,而快速排序的
方式则是当两个数组都有序时,整个数组自然就有序了。在归并排序中,一个数组被等分为两半,归并调用发生在
处理整个数组之前,在快速排序中,切分数组的位置取决于数组的内容,递归调用发生在处理整个数组之后。
快速排序时间复杂度分析:
快速排序的一次切分从两头开始交替搜索,直到left和right重合,因此,一次切分算法的时间复杂度为O(n),但整个
快速排序的时间复杂度和切分的次数相关。
最优情况:每一次切分选择的基准数字刚好将当前序列等分。

如果我们把数组的切分看做是一个树,那么上图就是它的最优情况的图示,共切分了logn次,所以,最优情况下快
速排序的时间复杂度为O(nlogn);
最坏情况:每一次切分选择的基准数字是当前序列中最大数或者最小数,这使得每次切分都会有一个子组,那么总
共就得切分n次,所以,最坏情况下,快速排序的时间复杂度为O(n^2);

平均情况:每一次切分选择的基准数字不是最大值和最小值,也不是中值,这种情况我们也可以用数学归纳法证
明,快速排序的时间复杂度为O(nlogn),由于数学归纳法有很多数学相关的知识,容易使我们混乱,所以这里就不对
平均情况的时间复杂度做证明了。
2.4 排序的稳定性
稳定性的定义:
数组arr中有若干元素,其中A元素和B元素相等,并且A元素在B元素前面,如果使用某种排序算法排序后,能够保
证A元素依然在B元素的前面,可以说这个该算法是稳定的。

稳定性的意义:
如果一组数据只需要一次排序,则稳定性一般是没有意义的,如果一组数据需要多次排序,稳定性是有意义的。例
如要排序的内容是一组商品对象,第一次排序按照价格由低到高排序,第二次排序按照销量由高到低排序,如果第
二次排序使用稳定性算法,就可以使得相同销量的对象依旧保持着价格高低的顺序展现,只有销量不同的对象才需
要重新排序。这样既可以保持第一次排序的原有意义,而且可以减少系统开销。
第一次按照价格从低到高排序:

第二次按照销量进行从高到低排序:

常见排序算法的稳定性:
冒泡排序:
只有当arr[i]>arr[i+1]的时候,才会交换元素的位置,而相等的时候并不交换位置,所以冒泡排序是一种稳定排序
算法。
选择排序:
选择排序是给每个位置选择当前元素最小的,例如有数据{5(1),8 ,5(2), 2, 9 },第一遍选择到的最小元素为2,
所以5(1)会和2进行交换位置,此时5(1)到了5(2)后面,破坏了稳定性,所以选择排序是一种不稳定的排序算法。
插入排序:
比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其
后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么把要插入的元素放在相等
元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序
是稳定的。
希尔排序:
希尔排序是按照不同步长对元素进行插入排序 ,虽然一次插入排序是稳定的,不会改变相同元素的相对顺序,但在
不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以希尔排序是不
稳定的。
归并排序:
归并排序在归并的过程中,只有arr[i]<arr[i+1]的时候才会交换位置,如果两个元素相等则不会交换位置,所以它
并不会破坏稳定性,归并排序是稳定的。
快速排序:
快速排序需要一个基准值,在基准值的右侧找一个比基准值小的元素,在基准值的左侧找一个比基准值大的元素,
然后交换这两个元素,此时会破坏稳定性,所以快速排序是一种不稳定的算法。