tensorflow2.0——history保存loss和acc


history包含以下几个属性:
训练集loss: loss
测试集loss: val_loss
训练集准确率: sparse_categorical_accuracy
测试集准确率: val_sparse_categorical_accuracy

my_model.compile(optimizer=opt,loss=tf.keras.losses.MSE)
history=my_model.fit(train_high0_img,train_rain,validation_data=(test_high0_img,test_rain),epochs=epochs, validation_freq=1,batch_size=bat)
#   history包含以下几个属性:
# 训练集loss: loss
# 测试集loss: val_loss
# 训练集准确率: sparse_categorical_accuracy
# 测试集准确率: val_sparse_categorical_accuracy
# acc = history.history['sparse_categorical_accuracy']
# val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
# print('acc:',acc)
# print('val_acc:',val_acc)
print('loss:',loss)
print('val_loss:',val_loss)

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM