python爬虫——什么值得买平台家电可视化数据分析


一、选题背景

  现如今社会上,我们常见得购物方式大多数都是通过网上购物来解决日常刚需。尤其是80,90,00后日常生活已经离不开这样子得生活方式。但是在碰到买家电得时候我们通常会去、苏宁易购、京东这些平台买。但是自己又不知道价格行情怎么样。我在上网浏览得时候发现“什么值得买”这个平台集合了所有购物平台的价格行情集合。所以选择此课题进行可视化数据分析。

二、网络爬虫设计方案

名称:什么值得买大家电数据爬虫

内容:通过request解析页面,爬取各大大家电的数据。

设计方案描述:

  1、请求:

    request请求

    xtree解析

  2、爬取数据

    xtree.xpath爬取内容

  3、数据保存

    使用sys进行文件操作

难点:爬取的内容不干净还得做字符处理。

三、结构特征分析

内容导航型

 

商品名称:

 

 

 

 

 

 价格:

 

 

 

商品介绍:

 

 

 

购买平台:

 

节点查找:

name = html.xpath("//*[@id='feed-main-list']/li[{}]/div/div[2]/h5/a/text()".format(coun))
price = html.xpath("//*[@id='feed-main-list']/li[{}]/div/div[2]/div[1]/a/text()".format(coun))
 platform = html.xpath("//*[@id='feed-main-list']/li[{}]/div/div[2]/div[3]/div[2]/span/a/text()".format(coun))
info = html.xpath("//*[@id='feed-main-list']/li[{}]/div/div[2]/div[2]/text()[1]".format(coun))

 

遍历:for循环遍历出来

四、程序设计

数据爬取:

 1 import requests
 2 from bs4 import BeautifulSoup
 3 import time
 4 import random
 5 import sys
 6 import re
 7 from tqdm import tqdm
 8 from lxml import etree
 9 
10 
11 # 随机头
12 USER_AGENTS = [
13     "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
14     "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)",
15     "Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
16     "Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)",
17     "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)",
18     "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)",
19     "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)",
20     "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)",
21     "Mozilla/5.0 (X11; U; Linux; en-US) AppleWebKit/527+ (KHTML, like Gecko, Safari/419.3) Arora/0.6",
22     "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1",
23     "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0",
24     "Mozilla/5.0 (X11; Linux i686; U;) Gecko/20070322 Kazehakase/0.4.5",
25     "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6",
26     "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11",
27     "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20",
28     "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52",
29     "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/2.0 Safari/536.11",
30     "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER",
31     "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; LBBROWSER)",
32     "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E; LBBROWSER)",
33     "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.84 Safari/535.11 LBBROWSER",
34 ]
35 headers = {
36     'User-Agent':random.choice(USER_AGENTS),
37     'Connection':'keep-alive',
38     'Accept-Language':'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2'
39     }
40 
41 # 创建Jiadian.csv
42 file = open("Jiadian.csv", "a")
43 file.write("name" + "," + "price" + "," + "info" + "," + "platform"  + '\n')
44 file = file.close()
45 
46 def jiadian(page):
47     for i in range(0,page):
48         page+=1
49         url = 'https://www.smzdm.com/fenlei/dajiadian/p'+str(page)+'/#feed-main'
50         res = requests.get(url,headers=headers)
51         res.encoding = 'utf-8'
52         html = etree.HTML(res.text)
53         # 家电名称name、价格price、商品简介info、出售平台platform
54         coun = 1
55         coun1 = 3
56         for i in range(30):
57             try:
58                 name = html.xpath("//*[@id='feed-main-list']/li[{}]/div/div[2]/h5/a/text()".format(coun))
59                 for i in name:
60                     name = i
61                 price = html.xpath("//*[@id='feed-main-list']/li[{}]/div/div[2]/div[1]/a/text()".format(coun))
62                 for i in price:
63                     price = i.strip()
64                     price = price.strip('(需用券)')
65                     price = price.strip('元包邮 (需用券)')
66                     price = price.strip('元包邮(双重优惠')
67                     price = price.strip('元包邮(拍下立减')
68                     price = price.strip('')
69                     price = price.strip('元(包邮、')
70 
71                     info = html.xpath("//*[@id='feed-main-list']/li[{}]/div/div[2]/div[2]/text()[1]".format(coun))
72                     for i in info:
73                         info = i.strip()
74                     #g购买平台内容筛出
75                     platform = html.xpath("//*[@id='feed-main-list']/li[{}]/div/div[2]/div[3]/div[2]/span/a/text()".format(coun))
76                     for i in platform:
77                         platform = i.strip()
78 
79                     # 将数据保存至Jiadian.csv文件
80                     with open("Jiadian.csv","a",encoding='utf-8') as f2:
81                         f2.writelines(name + "," + price + "," + platform + "," + info + "," + '\n')
82                     print(name,'\n','价格:',price,'','\n','简介:',info,'\n','购买平台:',platform,'\n')
83                     coun += 1
84                     
85             except:
86                 pass
87         time.sleep(1)
88         page+=1
89 
90 if __name__ == '__main__':
91     page = 100
92     jiadian(page)

运行图片:

 

 

数据清洗处理:

 

import pandas as pd
import numpy as np

JD =  pd.read_csv(r'D:\Hxt\Jiadian.csv',error_bad_lines=False)
JD.head(20)

 

  

 

# 重复值处理
JD = JD.drop_duplicates('name')
JD.head(20)

  

 

 

# 删除无效列
del JD['Unnamed: 4']
del JD['Unnamed: 5']
del JD['Unnamed: 6']
del JD['Unnamed: 7']
del JD['Unnamed: 8']
del JD['Unnamed: 9']
del JD['Unnamed: 10']

  

# Nan处理
JD = JD.dropna(axis = 0,how='any')

  

 

 可视化分析:

 

import matplotlib.pyplot as plt
# 可视化分析
# y的点击数单位为万
x = JD['name'].head(20)
y = JD['price'].head(20)
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False
plt.plot(x,y,'-.',color = 'y',label="点击量 单位/万")
plt.xticks(rotation=90)
plt.legend(loc = "best")#图例
plt.title("家电价格趋势图")
plt.xlabel("家电",)#横坐标名字
plt.ylabel("价格")#纵坐标名字
plt.show()

 

  

 

# 柱状图
plt.bar(x,y,alpha=0.2, width=0.4, color='', lw=3)
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.title("家电价格柱状图")
plt.xticks(rotation=90)
plt.xlabel("家电",)#横坐标名字
plt.ylabel("价格")#纵坐标名字
plt.show()

  

 

 

# 水平图
plt.barh(x,y, alpha=0.2, height=0.4, color='b',label="价格 单位/元", lw=3)
plt.title("家电价格水平图")
plt.legend(loc = "best")#图例
plt.xlabel("家电",)#横坐标名字
plt.ylabel("价格")#纵坐标名字
plt.show()

  

 

 

# 散点图
plt.scatter(x,y,color='pink',marker='o',s=40,edgecolor='black',alpha=0.5)
plt.xticks(rotation=90)
plt.title("家电价格散点图")
plt.xlabel("家电",)#横坐标名字
plt.ylabel("价格")#纵坐标名字
plt.show()

  

 

# 盒图
plt.boxplot(y)  
plt.title("家电价格量盒图")
plt.show()

  

 

 

 

# 云词
import pandas as pd
import numpy as np
import wordcloud as wc
from PIL import Image
import matplotlib.pyplot as plt

bk = np.array(Image.open("JD.jpg"))
mask = bk
JD =  pd.read_csv(r'D:\Hxt\Jiadian.csv',error_bad_lines=False)
word_cloud = wc.WordCloud(
                       width=1000,  # 词云图宽
                       height=1000,  # 词云图高
                       mask = mask,
                       background_color='white',  # 词云图背景颜色,默认为白色
                       font_path='msyhbd.ttc',  # 词云图 字体(中文需要设定为本机有的中文字体)
                       max_font_size=400,  # 最大字体,默认为200
                       random_state=50,  # 为每个单词返回一个PIL颜色
                       )
text = JD['info']
JD = []
for i in text:
    JD.append(i)
text = " ".join(JD)

word_cloud.generate(text)
plt.imshow(word_cloud)
plt.show()

  

 总代码:

 

 1 import pandas as pd
 2 import numpy as np
 3 
 4 JD =  pd.read_csv(r'D:\Hxt\Jiadian.csv',error_bad_lines=False)
 5 JD.head(20)
 6 # 重复值处理
 7 JD = JD.drop_duplicates('name')
 8 JD.head(20)
 9 # 删除无效列
10 del JD['Unnamed: 4']
11 del JD['Unnamed: 5']
12 del JD['Unnamed: 6']
13 del JD['Unnamed: 7']
14 del JD['Unnamed: 8']
15 del JD['Unnamed: 9']
16 del JD['Unnamed: 10']
17 # Nan处理
18 JD = JD.dropna(axis = 0,how='any')
19 import matplotlib.pyplot as plt
20 # 可视化分析
21 # y的点击数单位为万
22 x = JD['name'].head(20)
23 y = JD['price'].head(20)
24 plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
25 plt.rcParams['axes.unicode_minus']=False
26 plt.plot(x,y,'-.',color = 'y',label="点击量 单位/万")
27 plt.xticks(rotation=90)
28 plt.legend(loc = "best")#图例
29 plt.title("家电价格趋势图")
30 plt.xlabel("家电",)#横坐标名字
31 plt.ylabel("价格")#纵坐标名字
32 plt.show()
33 # 柱状图
34 plt.bar(x,y,alpha=0.2, width=0.4, color='', lw=3)
35 plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
36 plt.title("家电价格柱状图")
37 plt.xticks(rotation=90)
38 plt.xlabel("家电",)#横坐标名字
39 plt.ylabel("价格")#纵坐标名字
40 plt.show()
41 # 水平图
42 plt.barh(x,y, alpha=0.2, height=0.4, color='b',label="价格 单位/元", lw=3)
43 plt.title("家电价格水平图")
44 plt.legend(loc = "best")#图例
45 plt.xlabel("家电",)#横坐标名字
46 plt.ylabel("价格")#纵坐标名字
47 plt.show()
48 # 散点图
49 plt.scatter(x,y,color='pink',marker='o',s=40,edgecolor='black',alpha=0.5)
50 plt.xticks(rotation=90)
51 plt.title("家电价格散点图")
52 plt.xlabel("家电",)#横坐标名字
53 plt.ylabel("价格")#纵坐标名字
54 plt.show()
55 # 盒图
56 plt.boxplot(y)  
57 plt.title("家电价格量盒图")
58 plt.show()
59 # 云词
60 import pandas as pd
61 import numpy as np
62 import wordcloud as wc
63 from PIL import Image
64 import matplotlib.pyplot as plt
65 
66 bk = np.array(Image.open("JD.jpg"))
67 mask = bk
68 JD =  pd.read_csv(r'D:\Hxt\Jiadian.csv',error_bad_lines=False)
69 word_cloud = wc.WordCloud(
70                        width=1000,  # 词云图宽
71                        height=1000,  # 词云图高
72                        mask = mask,
73                        background_color='white',  # 词云图背景颜色,默认为白色
74                        font_path='msyhbd.ttc',  # 词云图 字体(中文需要设定为本机有的中文字体)
75                        max_font_size=400,  # 最大字体,默认为200
76                        random_state=50,  # 为每个单词返回一个PIL颜色
77                        )
78 text = JD['info']
79 JD = []
80 for i in text:
81     JD.append(i)
82 text = " ".join(JD)
83 
84 word_cloud.generate(text)
85 plt.imshow(word_cloud)
86 plt.show()

 

 

 

 

 五、总结

  通过此次主题数据分析与可视化、可以看出来在大家电价格中电脑、烘干机、大电视。价格比较贵。分析结果达到预期、何以很明显看出家电的不同价格。在此次设计过程中我收获到了原来我们常见的词语海报是云图所做,我对此非常感兴趣、还去查阅了很多相关材料。不足之处的话,可能就是爬虫了,爬取内容遇到太多坎,花费了很多时间才获取到数据内容。

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM