y总讲解:第十二届蓝桥杯C++ B组讲解_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili
A.空间
#include <iostream> #include <cstring> #include <algorithm> using namespace std; int main() { cout << 256 * 1024 * 1024 / 4 << endl; return 0; } //答案:67108864
B.卡片:
#include <iostream> #include <cstring> #include <algorithm> using namespace std; int s[10]; bool check(int x) { while (x) { int t = x % 10; x /= 10; if ( -- s[t] < 0) return false; } return true; } int main() { for (int i = 0; i < 10; i ++ ) s[i] = 2021; for (int i = 1; ; i ++ ) if (!check(i)) { cout << i - 1 << endl; return 0; } return 0; } //答案:3181
C.直线:
#include <iostream> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const int N = 200000; int n; struct Line { double k, b; bool operator< (const Line& t) const { if (k != t.k) return k < t.k; return b < t.b; } }l[N]; int main() { for (int x1 = 0; x1 < 20; x1 ++ ) for (int y1 = 0; y1 < 21; y1 ++ ) for (int x2 = 0; x2 < 20; x2 ++ ) for (int y2 = 0; y2 < 21; y2 ++ ) if (x1 != x2) { double k = (double)(y2 - y1) / (x2 - x1); double b = y1 - k * x1; l[n ++ ] = {k, b}; } sort(l, l + n); int res = 1; for (int i = 1; i < n; i ++ ) if (fabs(l[i].k - l[i - 1].k) > 1e-8 || fabs(l[i].b - l[i - 1].b) > 1e-8) res ++ ; cout << res + 20 << endl; return 0; } //答案:40257
D.货物摆放:
#include <iostream> #include <cstring> #include <algorithm> #include <vector> using namespace std; typedef long long LL; int main() { LL n; cin >> n; vector<LL> d; for (LL i = 1; i * i <= n; i ++ ) if (n % i == 0) { d.push_back(i); if (n / i != i) d.push_back(n / i); } int res = 0; for (auto a: d) for (auto b: d) for (auto c: d) if (a * b * c == n) res ++ ; cout << res << endl; return 0; } //答案:2430
E.路径:
#include <iostream> #include <cstring> #include <algorithm> using namespace std; const int N = 2200, M = N * 50; int n; int h[N], e[M], w[M], ne[M], idx; int q[N], dist[N]; bool st[N]; int gcd(int a, int b) // 欧几里得算法 { return b ? gcd(b, a % b) : a; } void add(int a, int b, int c) // 添加一条边a->b,边权为c { e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ; } void spfa() // 求1号点到n号点的最短路距离 { int hh = 0, tt = 0; memset(dist, 0x3f, sizeof dist); dist[1] = 0; q[tt ++ ] = 1; st[1] = true; while (hh != tt) { int t = q[hh ++ ]; if (hh == N) hh = 0; st[t] = false; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > dist[t] + w[i]) { dist[j] = dist[t] + w[i]; if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入 { q[tt ++ ] = j; if (tt == N) tt = 0; st[j] = true; } } } } } int main() { n = 2021; memset(h, -1, sizeof h); for (int i = 1; i <= n; i ++ ) for (int j = max(1, i - 21); j <= min(n, i + 21); j ++ ) { int d = gcd(i, j); add(i, j, i * j / d); } spfa(); printf("%d\n", dist[n]); return 0; } //答案:10266837
F.时间显示:
#include <iostream> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; int main() { LL n; cin >> n; n /= 1000; n %= 86400; int h = n / 3600; n %= 3600; int m = n / 60; int s = n % 60; printf("%02d:%02d:%02d\n", h, m, s); return 0; }
G.砝码称重:
#include <iostream> #include <cstring> #include <algorithm> using namespace std; const int N = 110, M = 200010, B = M / 2; int n, m; int w[N]; bool f[N][M]; int main() { scanf("%d", &n); for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]), m += w[i]; f[0][B] = true; for (int i = 1; i <= n; i ++ ) for (int j = -m; j <= m; j ++ ) { f[i][j + B] = f[i - 1][j + B]; if (j - w[i] >= -m) f[i][j + B] |= f[i - 1][j - w[i] + B]; if (j + w[i] <= m) f[i][j + B] |= f[i - 1][j + w[i] + B]; } int res = 0; for (int j = 1; j <= m; j ++ ) if (f[n][j + B]) res ++ ; printf("%d\n", res); return 0; }
H.杨辉三角形:
#include <iostream> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; int n; LL C(int a, int b) { LL res = 1; for (int i = a, j = 1; j <= b; i --, j ++ ) { res = res * i / j; if (res > n) return res; } return res; } bool check(int k) { LL l = k * 2, r = max((LL)n, l); while (l < r) { LL mid = l + r >> 1; if (C(mid, k) >= n) r = mid; else l = mid + 1; } if (C(r, k) != n) return false; cout << r * (r + 1) / 2 + k + 1 << endl; return true; } int main() { cin >> n; for (int k = 16; ; k -- ) if (check(k)) break; return 0; }