NLP(九):pytorch用transformer库实现BERT


一、资源

(1)预训练模型权重

链接:  密码: 1upi

(2)数据集选择的THUCNews,自行下载并整理出10w条数据,内容是10类新闻文本标题的中文分类问题(10分类),每类新闻标题数据量相等,为1w条。数据集可在我的百度网盘自行下载:链接:  密码: p0wj。

(3)安装

pip install transformers

(4)参考:

https://zhuanlan.zhihu.com/p/112655246

https://spaces.ac.cn/archives/6736

二、简介

由于pytorch_pretrained_bert库是transformers的老版库,不再进行更新了。所以以下对原文章代码进行了更新,换成以transformers为框架的代码,并且将打印输出设置的更加简约。本文章适用于初学者,有兴趣的可上手尝试。

----------------- 分割线 ----------------

之前用bert一直都是根据keras-bert封装库操作的,操作非常简便(可参考苏剑林大佬博客当Bert遇上Keras:这可能是Bert最简单的打开姿势),这次想要来尝试一下基于pytorch的bert实践。

最近pytorch大火,而目前很少有博客完整的给出基于pytorch的bert的应用代码,本文从最简单的中文文本分类入手,一步一步的给出每段代码~ (代码简单清晰,读者有兴趣可上手实践)

(1)首先安装transformers库, 即:pip install transformers(版本为4.4.2);

(2)然后下载预训练模型权重,这里下载的是 chinese_roberta_wwm_ext_pytorch ,下载链接为中文BERT-wwm系列模型 (这里可选择多种模型),如果下载不了,可在我的百度网盘下载:链接:  密码: 1upi;

(3)数据集选择的THUCNews,自行下载并整理出10w条数据,内容是10类新闻文本标题的中文分类问题(10分类),每类新闻标题数据量相等,为1w条。数据集可在我的百度网盘自行下载:链接:  密码: p0wj。

下图为数据集展示(最后10行),格式为"title \t label",标题和所属类别两列用'\t'分隔。

废话少说,下面进入代码阶段。(训练环境为Google Colab,GPU为T4,显存大约15G)

1 导入必要的库

import pandas as pd import numpy as np import json, time from tqdm import tqdm from sklearn.metrics import accuracy_score, classification_report import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from transformers import BertModel, BertConfig, BertTokenizer, AdamW, get_cosine_schedule_with_warmup import warnings warnings.filterwarnings('ignore') bert_path = "bert_model/" # 该文件夹下存放三个文件('vocab.txt', 'pytorch_model.bin', 'config.json') tokenizer = BertTokenizer.from_pretrained(bert_path) # 初始化分词器

2 预处理数据集

input_ids, input_masks, input_types, = [], [], [] # input char ids, segment type ids, attention mask labels = [] # 标签 maxlen = 30 # 取30即可覆盖99% with open("news_title_dataset.csv", encoding='utf-8') as f: for i, line in tqdm(enumerate(f)): title, y = line.strip().split('\t') # encode_plus会输出一个字典,分别为'input_ids', 'token_type_ids', 'attention_mask'对应的编码 # 根据参数会短则补齐,长则切断 encode_dict = tokenizer.encode_plus(text=title, max_length=maxlen, padding='max_length', truncation=True) input_ids.append(encode_dict['input_ids']) input_types.append(encode_dict['token_type_ids']) input_masks.append(encode_dict['attention_mask']) labels.append(int(y)) input_ids, input_types, input_masks = np.array(input_ids), np.array(input_types), np.array(input_masks) labels = np.array(labels) print(input_ids.shape, input_types.shape, input_masks.shape, labels.shape)
输出:(27秒,速度较快)
100000it [00:27, 3592.75it/s]
(100000, 30) (100000, 30) (100000, 30) (100000,)

3 切分训练集、验证集和测试集

# 随机打乱索引 idxes = np.arange(input_ids.shape[0]) np.random.seed(2019) # 固定种子 np.random.shuffle(idxes) print(idxes.shape, idxes[:10]) # 8:1:1 划分训练集、验证集、测试集 input_ids_train, input_ids_valid, input_ids_test = input_ids[idxes[:80000]], input_ids[idxes[80000:90000]], input_ids[idxes[90000:]] input_masks_train, input_masks_valid, input_masks_test = input_masks[idxes[:80000]], input_masks[idxes[80000:90000]], input_masks[idxes[90000:]] input_types_train, input_types_valid, input_types_test = input_types[idxes[:80000]], input_types[idxes[80000:90000]], input_types[idxes[90000:]] y_train, y_valid, y_test = labels[idxes[:80000]], labels[idxes[80000:90000]], labels[idxes[90000:]] print(input_ids_train.shape, y_train.shape, input_ids_valid.shape, y_valid.shape, input_ids_test.shape, y_test.shape)
输出:

4加载到高效的DataLoader

BATCH_SIZE = 64 # 如果会出现OOM问题,减小它 # 训练集 train_data = TensorDataset(torch.LongTensor(input_ids_train), torch.LongTensor(input_masks_train), torch.LongTensor(input_types_train), torch.LongTensor(y_train)) train_sampler = RandomSampler(train_data) train_loader = DataLoader(train_data, sampler=train_sampler, batch_size=BATCH_SIZE) # 验证集 valid_data = TensorDataset(torch.LongTensor(input_ids_valid), torch.LongTensor(input_masks_valid), torch.LongTensor(input_types_valid), torch.LongTensor(y_valid)) valid_sampler = SequentialSampler(valid_data) valid_loader = DataLoader(valid_data, sampler=valid_sampler, batch_size=BATCH_SIZE) # 测试集(是没有标签的) test_data = TensorDataset(torch.LongTensor(input_ids_test), torch.LongTensor(input_masks_test), torch.LongTensor(input_types_test)) test_sampler = SequentialSampler(test_data) test_loader = DataLoader(test_data, sampler=test_sampler, batch_size=BATCH_SIZE)

5 定义bert模型

# 定义model class Bert_Model(nn.Module): def __init__(self, bert_path, classes=10): super(Bert_Model, self).__init__() self.config = BertConfig.from_pretrained(bert_path) self.bert = BertModel.from_pretrained(bert_path) self.fc = nn.Linear(self.config.hidden_size, classes) # 直接分类 def forward(self, input_ids, attention_mask=None, token_type_ids=None): outputs = self.bert(input_ids, attention_mask, token_type_ids) out_pool = outputs[1] # 池化后的输出 logit = self.fc(out_pool) return logit

可以发现,bert模型的定义由于高效简易的封装库存在,使得定义模型较为容易,如果想要在bert之后加入cnn/rnn等层,可在这里定义。

6 实例化bert模型

def get_parameter_number(model): # 打印模型参数 total_num = sum(p.numel() for p in model.parameters()) trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad) return 'Total parameters: {}, Trainable parameters: {}'.format(total_num, trainable_num) DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") EPOCHS = 5 model = Bert_Model(bert_path).to(DEVICE) print(get_parameter_number(model))
输出:Total parameters: 102275338, Trainable parameters: 102275338

7 定义优化器

optimizer = AdamW(model.parameters(), lr=2e-5, weight_decay=1e-4) #AdamW优化器 scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=len(train_loader), num_training_steps=EPOCHS*len(train_loader)) # 学习率先线性warmup一个epoch,然后cosine式下降。

8 定义训练函数和验证测试函数

# 评估模型性能,在验证集上 def evaluate(model, data_loader, device): model.eval() val_true, val_pred = [], [] with torch.no_grad(): for idx, (ids, att, tpe, y) in (enumerate(data_loader)): y_pred = model(ids.to(device), att.to(device), tpe.to(device)) y_pred = torch.argmax(y_pred, dim=1).detach().cpu().numpy().tolist() val_pred.extend(y_pred) val_true.extend(y.squeeze().cpu().numpy().tolist()) return accuracy_score(val_true, val_pred) #返回accuracy # 测试集没有标签,需要预测提交 def predict(model, data_loader, device): model.eval() val_pred = [] with torch.no_grad(): for idx, (ids, att, tpe) in tqdm(enumerate(data_loader)): y_pred = model(ids.to(device), att.to(device), tpe.to(device)) y_pred = torch.argmax(y_pred, dim=1).detach().cpu().numpy().tolist() val_pred.extend(y_pred) return val_pred def train_and_eval(model, train_loader, valid_loader, optimizer, scheduler, device, epoch): best_acc = 0.0 patience = 0 criterion = nn.CrossEntropyLoss() for i in range(epoch): """训练模型""" start = time.time() model.train() print("***** Running training epoch {} *****".format(i+1)) train_loss_sum = 0.0 for idx, (ids, att, tpe, y) in enumerate(train_loader): ids, att, tpe, y = ids.to(device), att.to(device), tpe.to(device), y.to(device) y_pred = model(ids, att, tpe) loss = criterion(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step() # 学习率变化 train_loss_sum += loss.item() if (idx + 1) % (len(train_loader)//5) == 0: # 只打印五次结果 print("Epoch {:04d} | Step {:04d}/{:04d} | Loss {:.4f} | Time {:.4f}".format( i+1, idx+1, len(train_loader), train_loss_sum/(idx+1), time.time() - start)) # print("Learning rate = {}".format(optimizer.state_dict()['param_groups'][0]['lr'])) """验证模型""" model.eval() acc = evaluate(model, valid_loader, device) # 验证模型的性能 if acc > best_acc: best_acc = acc torch.save(model.state_dict(), "best_bert_model.pth") print("current acc is {:.4f}, best acc is {:.4f}".format(acc, best_acc)) print("time costed = {}s \n".format(round(time.time() - start, 5)))

9 开始训练和验证模型

# 训练和验证评估 train_and_eval(model, train_loader, valid_loader, optimizer, scheduler, DEVICE, EPOCHS)
输出:(训练时间较长,500s左右一个epoch,这里只训练了2个epoch,验证集便得到了0.9680的accuracy)

10 加载最优模型进行测试

# 加载最优权重对测试集测试 model.load_state_dict(torch.load("best_bert_model.pth")) pred_test = predict(model, test_loader, DEVICE) print("\n Test Accuracy = {} \n".format(accuracy_score(y_test, pred_test))) print(classification_report(y_test, pred_test, digits=4))
输出:测试集准确率为96.72%

------------------------------------

经过以上10步,即可建立起较为完整的基于pytorch的bert文本分类体系,代码也较为简单易懂,对读者有帮助记得点个赞支持一下呀~

-完结-

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM