pytorch——nn.BatchNorm1d()


版权声明:本文为CSDN博主「七月听雪」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_23262411/article/details/100175943

import torch
import torch.nn as nn
m = nn.BatchNorm1d(2)   # With Learnable Parameters
print('m:', m)
n = nn.BatchNorm1d(2, affine=False)   # Without Learnable Parameters
print('n:', n)
input = torch.randn(3, 2)
print('input:', input)
output = m(input)   # 列归一化
print('output:', input)

结果:
m:  BatchNorm1d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

n:  BatchNorm1d(2, eps=1e-05, momentum=0.1, affine=False, track_running_stats=True)

input: tensor([[-2.2418, -0.1225],
       [ 0.1637, -0.1043],
       [-0.4440, -0.2567]])

output: tensor([[-2.2418, -0.1225],
         [ 0.1637, -0.1043],
         [-0.4440, -0.2567]])


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM