《Java架构师的第一性原理》31分布式计算之RPC实战与核心原理(极客时间 何小峰)


00 开篇词 | 别老想着怎么用好RPC框架,你得多花时间琢磨原理

RPC 是解决分布式系统通信问题的一大利器。

分布式系统中的网络通信一般都会采用四层的 TCP 协议或七层的 HTTP 协议,在我的了解中,前者占大多数,这主要得益于 TCP 协议的稳定性和高效性。网络通信说起来简单,但实际上是一个非常复杂的过程,这个过程主要包括:对端节点的查找、网络连接的建立、传输数据的编码解码以及网络连接的管理等等,每一项都很复杂。
 
我把整个专栏的内容分为了三大部分,分别是基础篇、进阶篇和高级篇。
  • 基础篇:重点讲解 RPC 的基础知识,包括 RPC 的基本原理以及它的基本功能模块,夯实基础之后,我们会以一场实战,通过剖析一款 RPC 框架来将知识点串联起来。
  • 进阶篇:重点讲解 RPC 框架的架构设计,以及 RPC 框架集群、治理相关的知识。这部分我会列举很多我在运营 RPC 框架中遇到的实际问题,以及这些问题的解决方案。
  • 高级篇:通过对上述两部分的学习,你已经对 RPC 有了较高层次的理解了。在这部分,我主要会从性能优化、线上问题排查以及一些比较有特色的功能设计上讲解 RPC 的应用

01丨核心原理:能否画张图解释下RPC的通信流程?

 

02丨协议:怎么设计可扩展且向后兼容的协议?

1)那怎么设计一个私有 RPC 协议呢?

在协议头里面,我们除了会放协议长度、序列化方式,还会放一些像协议标示、消息 ID、消息类型这样的参数,而协议体一般只放请求接口方法、请求的业务参数值和一些扩展属性。这样一个完整的 RPC 协议大概就出来了,协议头是由一堆固定的长度参数组成,而协议体是根据请求接口和参数构造的,长度属于可变的,具体协议如下图所示:

 

2)可扩展的协议

刚才讲的协议属于定长协议头,那也就是说往后就不能再往协议头里加新参数了,如果加参数就会导致线上兼容问题。举个具体例子,假设你设计了一个 88Bit 的协议头,其中协议长度占用 32bit,然后你为了加入新功能,在协议头里面加了 2bit,并且放到协议头的最后。升级后的应用,会用新的协议发出请求,然而没有升级的应用收到的请求后,还是按照88bit 读取协议头,新加的 2 个 bit 会当作协议体前 2 个 bit 数据读出来,但原本的协议体最后 2 个 bit 会被丢弃了,这样就会导致协议体的数据是错的。

所以为了保证能平滑地升级改造前后的协议,我们有必要设计一种支持可扩展的协议。其关键在于让协议头支持可扩展,扩展后协议头的长度就不能定长了。那要实现读取不定长的协议头里面的内容,在这之前肯定需要一个固定的地方读取长度,所以我们需要一个固定的写入协议头的长度。整体协议就变成了三部分内容:固定部分、协议头内容、协议体内容,前两部分我们还是可以统称为“协议头”,具体协议如下:
最后,我想说,设计一个简单的 RPC 协议并不难,难的就是怎么去设计一个可“升级”的协议。不仅要让我们在扩展新特性的时候能做到向下兼容,而且要尽可能地减少资源损耗,所以我们协议的结构不仅要支持协议体的扩展,还要做到协议头也能扩展。上述这种设计方法来源于我多年的线上经验,可以说做好扩展性是至关重要的,期待这个协议模版能帮你避掉一些坑。

03丨序列化:对象怎么在网络中传输?

1)为什么要序列化

因为网络传输的数据必须是二进制数据,所以在 RPC 调用中,对入参对象与返回值对象进行序列化与反序列化是一个必须的过程。

 

 

 

2)有哪些常用的序列化

(1)JDK原生序列化

JDK 自带的序列化机制对使用者而言是非常简单的。序列化具体的实现是由 ObjectOutputStream 完成的,而反序列化的具体实现是由 ObjectInputStream 完成的。

实际上任何一种序列化框架,核心思想就是设计一种序列化协议,将对象的类型、属性类型、属性值一一按照固定的格式写到二进制字节流中来完成序列化,再按照固定的格式一一读出对象的类型、属性类型、属性值,通过这些信息重新创建出一个新的对象,来完成反序列化。

(2)JSON

用 JSON 进行序列化有这样两个问题,你需要格外注意:

  • JSON 进行序列化的额外空间开销比较大,对于大数据量服务这意味着需要巨大的内存和磁盘开销;
  • JSON 没有类型,但像 Java 这种强类型语言,需要通过反射统一解决,所以性能不会太好。
 (3)Hessian

Hessian 是动态类型、二进制、紧凑的,并且可跨语言移植的一种序列化框架。Hessian 协议要比 JDK、JSON 更加紧凑,性能上要比 JDK、JSON 序列化高效很多,而且生成的字节数也更小。

相对于 JDK、JSON,由于 Hessian 更加高效,生成的字节数更小,有非常好的兼容性和稳定性,所以 Hessian 更加适合作为 RPC 框架远程通信的序列化协议。

但 Hessian 本身也有问题,官方版本对 Java 里面一些常见对象的类型不支持,比如:

  • Linked 系列,LinkedHashMap、LinkedHashSet 等,但是可以通过扩展CollectionDeserializer 类修复;
  • Locale 类,可以通过扩展 ContextSerializerFactory 类修复;
  • Byte/Short 反序列化的时候变成 Integer。
(4)Protobuf
Protobuf 是 Google 公司内部的混合语言数据标准,是一种轻便、高效的结构化数据存储格式,可以用于结构化数据序列化,支持 Java、Python、C++、Go 等语言。Protobuf使用的时候需要定义 IDL(Interface description language),然后使用不同语言的 IDL编译器,生成序列化工具类,它的优点是:
  • 序列化后体积相比 JSON、Hessian 小很多;
  • IDL 能清晰地描述语义,所以足以帮助并保证应用程序之间的类型不会丢失,无需类似XML 解析器;
  • 序列化反序列化速度很快,不需要通过反射获取类型;
  • 消息格式升级和兼容性不错,可以做到向后兼容。 
Protobuf 非常高效,但是对于具有反射和动态能力的语言来说,这样用起来很费劲,这一点就不如 Hessian,比如用 Java 的话,这个预编译过程不是必须的,可以考虑使用Protostuff。
Protostuff 不需要依赖 IDL 文件,可以直接对 Java 领域对象进行反 / 序列化操作,在效率上跟 Protobuf 差不多,生成的二进制格式和 Protobuf 是完全相同的,可以说是一个 Java版本的 Protobuf 序列化框架。但在使用过程中,我遇到过一些不支持的情况,也同步给你:
  • 不支持 null;
  • ProtoStuff 不支持单纯的 Map、List 集合对象,需要包在对象里面。

 3)RPC 框架中如何选择序列化?

 

04丨网络通信:RPC框架在网络通信上更倾向于哪种网络IO模型?

1)网络通信在 RPC 调用中起到什么作用呢?

RPC 是解决进程间通信的一种方式。一次 RPC 调用,本质就是服务消费者与服务提供者间的一次网络信息交换的过程。服务调用者通过网络 IO 发送一条请求消息,服务提供者接收并解析,处理完相关的业务逻辑之后,再发送一条响应消息给服务调用者,服务调用者接收并解析响应消息,处理完相关的响应逻辑,一次 RPC 调用便结束了。可以说,网络通信是整个 RPC 调用流程的基础。

 2)常见的网络 IO 模型

 那说到网络通信,就不得不提一下网络 IO 模型。为什么要讲网络 IO 模型呢?因为所谓的两台 PC 机之间的网络通信,实际上就是两台 PC 机对网络 IO 的操作。

常见的网络 IO 模型分为四种:同步阻塞 IO(BIO)、同步非阻塞 IO(NIO)、IO 多路复用和异步非阻塞 IO(AIO)。在这四种 IO 模型中,只有 AIO 为异步 IO,其他都是同步IO。

其中,最常用的就是同步阻塞 IO 和 IO 多路复用,这一点通过了解它们的机制,你会 get到。至于其他两种 IO 模型,因为不常用,则不作为本讲的重点,有兴趣的话我们可以在留言区中讨论。

3)阻塞 IO(blocking IO)

同步阻塞 IO 是最简单、最常见的 IO 模型,在 Linux 中,默认情况下所有的 socket 都是blocking 的,先看下操作流程。

首先,应用进程发起 IO 系统调用后,应用进程被阻塞,转到内核空间处理。之后,内核开始等待数据,等待到数据之后,再将内核中的数据拷贝到用户内存中,整个 IO 处理完毕后返回进程。最后应用的进程解除阻塞状态,运行业务逻辑。

这里我们可以看到,系统内核处理 IO 操作分为两个阶段——等待数据和拷贝数据。而在这两个阶段中,应用进程中 IO 操作的线程会一直都处于阻塞状态,如果是基于 Java 多线程开发,那么每一个 IO 操作都要占用线程,直至 IO 操作结束。

这个流程就好比我们去餐厅吃饭,我们到达餐厅,向服务员点餐,之后要一直在餐厅等待后厨将菜做好,然后服务员会将菜端给我们,我们才能享用。

4)IO 多路复用(IO multiplexing)

多路复用 IO 是在高并发场景中使用最为广泛的一种 IO 模型,如 Java 的 NIO、Redis、Nginx 的底层实现就是此类 IO 模型的应用,经典的 Reactor 模式也是基于此类 IO 模型。

那么什么是 IO 多路复用呢?通过字面上的理解,多路就是指多个通道,也就是多个网络连接的 IO,而复用就是指多个通道复用在一个复用器上。

多个网络连接的 IO 可以注册到一个复用器(select)上,当用户进程调用了 select,那么整个进程会被阻塞。同时,内核会“监视”所有 select 负责的 socket,当任何一个 socket 中的数据准备好了,select 就会返回。这个时候用户进程再调用 read 操作,将数据从内核中拷贝到用户进程。

这里我们可以看到,当用户进程发起了 select 调用,进程会被阻塞,当发现该 select 负责的 socket 有准备好的数据时才返回,之后才发起一次 read,整个流程要比阻塞 IO 要复杂,似乎也更浪费性能。但它最大的优势在于,用户可以在一个线程内同时处理多个 socket 的 IO 请求。用户可以注册多个 socket,然后不断地调用 select 读取被激活的 socket,即可达到在同一个线程内同时处理多个 IO 请求的目的。而在同步阻塞模型中,必须通过多线程的方式才能达到这个目的。

同样好比我们去餐厅吃饭,这次我们是几个人一起去的,我们专门留了一个人在餐厅排号等位,其他人就去逛街了,等排号的朋友通知我们可以吃饭了,我们就直接去享用了

5)为什么说阻塞 IO 和 IO 多路复用最为常用?

了解完二者的机制,我们就可以回到起初的问题了——我为什么说阻塞 IO 和 IO 多路复用最为常用。

对比这四种网络 IO 模型:阻塞 IO、非阻塞 IO、IO 多路复用、异步 IO。实际在网络 IO 的应用上,需要的是系统内核的支持以及编程语言的支持。

在系统内核的支持上,现在大多数系统内核都会支持阻塞 IO、非阻塞 IO 和 IO 多路复用,但像信号驱动 IO、异步 IO,只有高版本的 Linux 系统内核才会支持。

在编程语言上,无论 C++ 还是 Java,在高性能的网络编程框架的编写上,大多数都是基于 Reactor 模式,其中最为典型的便是 Java 的 Netty 框架,而 Reactor 模式是基于 IO 多路复用的。

当然,在非高并发场景下,同步阻塞 IO 是最为常见的。综合来讲,在这四种常用的 IO 模型中,应用最多的、系统内核与编程语言支持最为完善的,便是阻塞 IO 和 IO 多路复用。这两种 IO 模型,已经可以满足绝大多数网络 IO 的应用场景。

6)RPC 框架在网络通信上倾向选择哪种网络 IO 模型?

讲完了这两种最常用的网络 IO 模型,我们可以看看它们都适合什么样的场景。

IO 多路复用更适合高并发的场景,可以用较少的进程(线程)处理较多的 socket 的 IO 请求,但使用难度比较高。当然高级的编程语言支持得还是比较好的,比如 Java 语言有很多的开源框架对 Java 原生 API 做了封装,如 Netty 框架,使用非常简便;而 GO 语言,语言本身对 IO 多路复用的封装就已经很简洁了。

而阻塞 IO 与 IO 多路复用相比,阻塞 IO 每处理一个 socket 的 IO 请求都会阻塞进程(线程),但使用难度较低。在并发量较低、业务逻辑只需要同步进行 IO 操作的场景下,阻塞IO 已经满足了需求,并且不需要发起 select 调用,开销上还要比 IO 多路复用低。

RPC 调用在大多数的情况下,是一个高并发调用的场景,考虑到系统内核的支持、编程语言的支持以及 IO 模型本身的特点,在 RPC 框架的实现中,在网络通信的处理上,我们会选择 IO 多路复用的方式。开发语言的网络通信框架的选型上,我们最优的选择是基于Reactor 模式实现的框架,如 Java 语言,首选的框架便是 Netty 框架(Java 还有很多其他 NIO 框架,但目前 Netty 应用得最为广泛),并且在 Linux 环境下,也要开启 epoll 来提升系统性能(Windows 环境下是无法开启 epoll 的,因为系统内核不支持)。

了解完以上内容,我们可以继续看这样一个关键问题——零拷贝。在我们应用的过程中,他是非常重要的。

7)什么是零拷贝?

刚才讲阻塞 IO 的时候我讲到,系统内核处理 IO 操作分为两个阶段——等待数据和拷贝数据。等待数据,就是系统内核在等待网卡接收到数据后,把数据写到内核中;而拷贝数据,就是系统内核在获取到数据后,将数据拷贝到用户进程的空间中。以下是具体流程:

 

应用进程的每一次写操作,都会把数据写到用户空间的缓冲区中,再由 CPU 将数据拷贝到系统内核的缓冲区中,之后再由 DMA 将这份数据拷贝到网卡中,最后由网卡发送出去。这里我们可以看到,一次写操作数据要拷贝两次才能通过网卡发送出去,而用户进程的读操作则是将整个流程反过来,数据同样会拷贝两次才能让应用程序读取到数据。

应用进程的一次完整的读写操作,都需要在用户空间与内核空间中来回拷贝,并且每一次拷贝,都需要 CPU 进行一次上下文切换(由用户进程切换到系统内核,或由系统内核切换到用户进程),这样是不是很浪费 CPU 和性能呢?那有没有什么方式,可以减少进程间的数据拷贝,提高数据传输的效率呢?

这时我们就需要零拷贝(Zero-copy)技术。

所谓的零拷贝,就是取消用户空间与内核空间之间的数据拷贝操作,应用进程每一次的读写操作,可以通过一种方式,直接将数据写入内核或从内核中读取数据,再通过 DMA 将内核中的数据拷贝到网卡,或将网卡中的数据 copy 到内核。

那怎么做到零拷贝?你想一下是不是用户空间与内核空间都将数据写到一个地方,就不需要拷贝了?此时你有没有想到虚拟内存?

 

零拷贝有两种解决方式,分别是 mmap+write 方式和 sendfile 方式,其核心原理都是通过虚拟内存来解决的。这两种实现方式都不难,市面上可查阅的资料也很多,在此就不详述了,有问题,可以在留言区中解决。

8)Netty 中的零拷贝

了解完零拷贝,我们再看看 Netty 中的零拷贝。

我刚才讲到,RPC 框架在网络通信框架的选型上,我们最优的选择是基于 Reactor 模式实现的框架,如 Java 语言,首选的便是 Netty 框架。那么 Netty 框架是否也有零拷贝机制呢?Netty 框架中的零拷贝和我之前讲的零拷贝又有什么不同呢?

刚才我讲的零拷贝是操作系统层面上的零拷贝,主要目标是避免用户空间与内核空间之间的数据拷贝操作,可以提升 CPU 的利用率。

而 Netty 的零拷贝则不大一样,他完全站在了用户空间上,也就是 JVM 上,它的零拷贝主要是偏向于数据操作的优化上。

9)那么 Netty 这么做的意义是什么呢?

回想下[第 02 讲],在这一讲中我讲解了 RPC 框架如何去设计协议,其中我讲到:在传输过程中,RPC 并不会把请求参数的所有二进制数据整体一下子发送到对端机器上,中间可能会拆分成好几个数据包,也可能会合并其他请求的数据包,所以消息都需要有边界。那么一端的机器收到消息之后,就需要对数据包进行处理,根据边界对数据包进行分割和合并,最终获得一条完整的消息。
那收到消息后,对数据包的分割和合并,是在用户空间完成,还是在内核空间完成的呢?

当然是在用户空间,因为对数据包的处理工作都是由应用程序来处理的,那么这里有没有可能存在数据的拷贝操作?可能会存在,当然不是在用户空间与内核空间之间的拷贝,是用户空间内部内存中的拷贝处理操作。Netty 的零拷贝就是为了解决这个问题,在用户空间对数据操作进行优化。

那么 Netty 是怎么对数据操作进行优化的呢?

  • Netty 提供了 CompositeByteBuf 类,它可以将多个 ByteBuf 合并为一个逻辑上的ByteBuf,避免了各个 ByteBuf 之间的拷贝。
  • ByteBuf 支持 slice 操作,因此可以将 ByteBuf 分解为多个共享同一个存储区域的ByteBuf,避免了内存的拷贝。
  • 通过 wrap 操作,我们可以将 byte[] 数组、ByteBuf、ByteBuffer 等包装成一个 NettyByteBuf 对象, 进而避免拷贝操作。

Netty 框架中很多内部的 ChannelHandler 实现类,都是通过 CompositeByteBuf、slice、wrap 操作来处理 TCP 传输中的拆包与粘包问题的。

那么 Netty 有没有解决用户空间与内核空间之间的数据拷贝问题的方法呢?

Netty 的 ByteBuffer 可以采用 Direct Buffers,使用堆外直接内存进行 Socketd 的读写操作,最终的效果与我刚才讲解的虚拟内存所实现的效果是一样的。

Netty 还提供 FileRegion 中包装 NIO 的 FileChannel.transferTo() 方法实现了零拷贝,这与 Linux 中的 sendfile 方式在原理上也是一样的。 

05丨动态代理:面向接口编程,屏蔽RPC处理流程

其实关于网络通信,你只要记住一个关键字就行了——可靠的传输。

1)远程调用的魔法

我们都知道,接口里并不会包含真实的业务逻辑,业务逻辑都在服务提供方应用里,但我们通过调用接口方法,确实拿到了想要的结果,是不是感觉有点神奇呢?想一下,在 RPC 里面,我们是怎么完成这个魔术的。

这里面用到的核心技术就是前面说的动态代理。RPC 会自动给接口生成一个代理类,当我们在项目中注入接口的时候,运行过程中实际绑定的是这个接口生成的代理类。这样在接口方法被调用的时候,它实际上是被生成代理类拦截到了,这样我们就可以在生成的代理类里面,加入远程调用逻辑。

通过这种“偷梁换柱”的手法,就可以帮用户屏蔽远程调用的细节,实现像调用本地一样地调用远程的体验,整体流程如下图所示:

 

 2)实现原理

重点是代理类的生成,那我们就去看下 Proxy.newProxyInstance 里面究竟发生了什么?

一起看下下面的流程图,具体代码细节你可以对照着 JDK 的源码看(上文中有类和方法,可以直接定位),我是按照 1.7.X 版本梳理的。

 

 3)实现方法

其实在 Java 领域,除了 JDK 默认的 nvocationHandler 能完成代理功能,我们还有很多其他的第三方框架也可以,比如像 Javassist、Byte Buddy 这样的框架。

06丨RPC实战:剖析gRPC源码,动手实现一个完整的RPC

这一讲我们就来实战一下,看看具体落实到代码上,我们应该怎么实现一个 RPC 框架?
为了能让咱们快速达成共识,我选择剖析 gRPC 源码(源码地址:https://github.com/grpc/grpc-java)。
通过分析 gRPC 的通信过程,我们可以清楚地知道在 gRPC 里面这些知识点是怎么落地到具体代码上的。
 
gRPC 是由 Google 开发并且开源的一款高性能、跨语言的 RPC 框架,当前支持 C、Java和 Go 等语言,当前 Java 版本最新 Release 版为 1.27.0。gRPC 有很多特点,比如跨语言,通信协议是基于标准的 HTTP/2 设计的,序列化支持 PB(Protocol Buffer)和JSON,整个调用示例如下图所示: 

 

总的来说,其实我们可以简单地认为 gRPC 就是采用 HTTP/2 协议,并且默认采用 PB 序列化方式的一种 RPC,它充分利用了 HTTP/2 的多路复用特性,使得我们可以在同一条链路上双向发送不同的 Stream 数据,以解决 HTTP/1.X 存在的性能问题。

07丨架构设计:设计一个灵活的RPC框架

1)RPC架构

传输模块

协议封装

Spring封装的Bootstrap 模块

服务发现模块

 

 

 

2)可拓展的架构

插件化架构。

在 RPC 框架里面,我们是怎么支持插件化架构的呢?我们可以将每个功能点抽象成一个接口,将这个接口作为插件的契约,然后把这个功能的接口与功能的实现分离,并提供接口的默认实现。

在 Java 里面,JDK 有自带的 SPI(Service Provider Interface)服务发现机制,它可以动态地为某个接口寻找服务实现。使用 SPI 机制需要在 Classpath 下的 META-INF/services 目录里创建一个以服务接口命名的文件,这个文件里的内容就是这个接口的具体实现类。

但在实际项目中,我们其实很少使用到 JDK 自带的 SPI 机制,首先它不能按需加载,ServiceLoader 加载某个接口实现类的时候,会遍历全部获取,也就是接口的实现类得全部载入并实例化一遍,会造成不必要的浪费。另外就是扩展如果依赖其它的扩展,那就做不到自动注入和装配,这就很难和其他框架集成,比如扩展里面依赖了一个 Spring Bean,原生的 Java SPI 就不支持。

加上了插件功能之后,我们的 RPC 框架就包含了两大核心体系——核心功能体系与插件体系,如下图所示:插件化RPC

 

 这时,整个架构就变成了一个微内核架构,我们将每个功能点抽象成一个接口,将这个接口作为插件的契约,然后把这个功能的接口与功能的实现分离并提供接口的默认实现。

这样的架构相比之前的架构,有很多优势。首先它的可扩展性很好,实现了开闭原则,用户可以非常方便地通过插件扩展实现自己的功能,而且不需要修改核心功能的本身;其次就是保持了核心包的精简,依赖外部包少,这样可以有效减少开发人员引入 RPC 导致的包版本冲突问题。

08丨服务发现:到底是要CP还是AP?

1)为什么需要服务发现?

对于服务调用方和服务提供方来说,其契约就是接口,相当于“通信录”中的姓名,服务节点就是提供该契约的一个具体实例。服务 IP 集合作为“通信录”中的地址,从而可以通过接口获取服务 IP 的集合来完成服务的发现。这就是我要说的 PRC 框架的服务发现机制,如下图所示:
  • 服务注册:在服务提供方启动的时候,将对外暴露的接口注册到注册中心之中,注册中心将这个服务节点的 IP 和接口保存下来。
  • 服务订阅:在服务调用方启动的时候,去注册中心查找并订阅服务提供方的 IP,然后缓存到本地,并用于后续的远程调用。
2)RPC服务发现原理图为什么不使用 DNS?
既然服务发现这么“厉害”,那是不是很难实现啊?其实类似机制一直在我们身边,我们回想下服务发现的本质,就是完成了接口跟服务提供者 IP 的映射。那我们能不能把服务提供者 IP 统一换成一个域名啊,利用已经成熟的 DNS 机制来实现?
好,先带着这个问题,简单地看下 DNS 的流程:
如果我们用 DNS 来实现服务发现,所有的服务提供者节点都配置在了同一个域名下,调用方的确可以通过 DNS 拿到随机的一个服务提供者的 IP,并与之建立长连接,这看上去并没有太大问题,但在我们业界为什么很少用到这种方案呢?不知道你想过这个问题没有,如果没有,现在可以停下来想想这样两个问题:
  • 如果这个 IP 端口下线了,服务调用者能否及时摘除服务节点呢?
  • 如果在之前已经上线了一部分服务节点,这时我突然对这个服务进行扩容,那么新上线的服务节点能否及时接收到流量呢?
这两个问题的答案都是:“不能”。这是因为为了提升性能和减少 DNS 服务的压力,DNS 采取了多级缓存机制,一般配置的缓存时间较长,特别是 JVM 的默认缓存是永久有效的,所以说服务调用者不能及时感知到服务节点的变化。
这时你可能会想,我是不是可以加一个负载均衡设备呢?将域名绑定到这台负载均衡设备上,通过 DNS 拿到负载均衡的 IP。这样服务调用的时候,服务调用方就可以直接跟 VIP 建立连接,然后由 VIP 机器完成 TCP 转发,如下图所示:
这个方案确实能解决 DNS 遇到的一些问题,但在 RPC 场景里面也并不是很合适,原因有以下几点:
  • 搭建负载均衡设备或 TCP/IP 四层代理,需求额外成本;
  • 请求流量都经过负载均衡设备,多经过一次网络传输,会额外浪费些性能;
  • 负载均衡添加节点和摘除节点,一般都要手动添加,当大批量扩容和下线时,会有大量的人工操作和生效延迟;
  • 我们在服务治理的时候,需要更灵活的负载均衡策略,目前的负载均衡设备的算法还满足不了灵活的需求。 
由此可见,DNS 或者 VIP 方案虽然可以充当服务发现的角色,但在 RPC 场景里面直接用还是很难的。
 
3)基于 ZooKeeper 的服务发现
那么在 RPC 里面我们该如何实现呢?我们还是要回到服务发现的本质,就是完成接口跟服务提供者 IP 之间的映射。这个映射是不是就是一种命名服务?当然,我们还希望注册中心能完成实时变更推送,是不是像开源的 ZooKeeper、etcd 就可以实现?我很肯定地说“确实可以”。下面我就来介绍下一种基于 ZooKeeper 的服务发现方式。
整体的思路很简单,就是搭建一个 ZooKeeper 集群作为注册中心集群,服务注册的时候只需要服务节点向 ZooKeeper 节点写入注册信息即可,利用 ZooKeeper 的 Watcher 机制完成服务订阅与服务下发功能,整体流程如下图:

 

  • 服务平台管理端先在 ZooKeeper 中创建一个服务根路径,可以根据接口名命名(例如:/service/com.demo.xxService),在这个路径再创建服务提供方目录与服务调用方目录(例如:provider、consumer),分别用来存储服务提供方的节点信息和服务调用方的节点信息。
  • 当服务提供方发起注册时,会在服务提供方目录中创建一个临时节点,节点中存储该服务提供方的注册信息。
  • 当服务调用方发起订阅时,则在服务调用方目录中创建一个临时节点,节点中存储该服务调用方的信息,同时服务调用方 watch 该服务的服务提供方目录(/service/com.demo.xxService/provider)中所有的服务节点数据。
  • 当服务提供方目录下有节点数据发生变更时,ZooKeeper 就会通知给发起订阅的服务调用方。
我所在的技术团队早期使用的 RPC 框架服务发现就是基于 ZooKeeper 实现的,并且还平稳运行了一年多,但后续团队的微服务化程度越来越高之后,ZooKeeper 集群整体压力也越来越高,尤其在集中上线的时候越发明显。“集中爆发”是在一次大规模上线的时候,当时有超大批量的服务节点在同时发起注册操作,ZooKeeper 集群的 CPU 突然飙升,导致 ZooKeeper 集群不能工作了,而且我们当时也无法立马将 ZooKeeper 集群重新启动,一直到 ZooKeeper 集群恢复后业务才能继续上线。
经过我们的排查,引发这次问题的根本原因就是 ZooKeeper 本身的性能问题,当连接到ZooKeeper 的节点数量特别多,对 ZooKeeper 读写特别频繁,且 ZooKeeper 存储的目录达到一定数量的时候,ZooKeeper 将不再稳定,CPU 持续升高,最终宕机。而宕机之后,由于各业务的节点还在持续发送读写请求,刚一启动,ZooKeeper 就因无法承受瞬间的读写压力,马上宕机。
这次“意外”让我们意识到,ZooKeeper 集群性能显然已经无法支撑我们现有规模的服务集群了,我们需要重新考虑服务发现方案。
4)基于消息总线的最终一致性的注册中心
我们知道,ZooKeeper 的一大特点就是强一致性,ZooKeeper 集群的每个节点的数据每次发生更新操作,都会通知其它 ZooKeeper 节点同时执行更新。它要求保证每个节点的数据能够实时的完全一致,这也就直接导致了 ZooKeeper 集群性能上的下降。这就好比几个人在玩传递东西的游戏,必须这一轮每个人都拿到东西之后,所有的人才能开始下一轮,而不是说我只要获得到东西之后,就可以直接进行下一轮了。
而 RPC 框架的服务发现,在服务节点刚上线时,服务调用方是可以容忍在一段时间之后(比如几秒钟之后)发现这个新上线的节点的。毕竟服务节点刚上线之后的几秒内,甚至更长的一段时间内没有接收到请求流量,对整个服务集群是没有什么影响的,所以我们可以牺牲掉 CP(强制一致性),而选择 AP(最终一致),来换取整个注册中心集群的性能和稳定性。
那么是否有一种简单、高效,并且最终一致的更新机制,能代替 ZooKeeper 那种数据强一致的数据更新机制呢?
因为要求最终一致性,我们可以考虑采用消息总线机制。注册数据可以全量缓存在每个注册中心内存中,通过消息总线来同步数据。当有一个注册中心节点接收到服务节点注册时,会产生一个消息推送给消息总线,再通过消息总线通知给其它注册中心节点更新数据并进行服务下发,从而达到注册中心间数据最终一致性,具体流程如下图所示:

 

当有服务上线,注册中心节点收到注册请求,服务列表数据发生变化,会生成一个消息,推送给消息总线,每个消息都有整体递增的版本。

消息总线会主动推送消息到各个注册中心,同时注册中心也会定时拉取消息。对于获取到消息的在消息回放模块里面回放,只接受大于本地版本号的消息,小于本地版本号的消息直接丢弃,从而实现最终一致性。

消费者订阅可以从注册中心内存拿到指定接口的全部服务实例,并缓存到消费者的内存里面。

采用推拉模式,消费者可以及时地拿到服务实例增量变化情况,并和内存中的缓存数据进行合并。

为了性能,这里采用了两级缓存,注册中心和消费者的内存缓存,通过异步推拉模式来确保最终一致性。

另外,你也可能会想到,服务调用方拿到的服务节点不是最新的,所以目标节点存在已经下线或不提供指定接口服务的情况,这个时候有没有问题?这个问题我们放到了 RPC 框架里面去处理,在服务调用方发送请求到目标节点后,目标节点会进行合法性验证,如果指定接口服务不存在或正在下线,则会拒绝该请求。服务调用方收到拒绝异常后,会安全重试到其它节点。
通过消息总线的方式,我们就可以完成注册中心集群间数据变更的通知,保证数据的最终一致性,并能及时地触发注册中心的服务下发操作。在 RPC 领域精耕细作后,你会发现,服务发现的特性是允许我们在设计超大规模集群服务发现系统的时候,舍弃强一致性,更多地考虑系统的健壮性。最终一致性才是分布式系统设计中更为常用的策略。
5)总结
RPC 框架依赖的注册中心的服务数据的一致性其实并不需要满足 CP,只要满足 AP 即可。我们就是采用“消息总线”的通知机制,来保证注册中心数据的最终一致性,来解决这些问题的。

09丨健康检测:这个节点都挂了,为啥还要疯狂发请求?

1)怎么保证选择出来的连接一定是可用的呢?

终极的解决方案是让调用方实时感知到节点的状态变化。
2)遇到的问题

 

 为了进一步了解事情的真相,我查看了问题时间点的监控和日志,在案发现场发现了这样几个线索:

  • 通过日志发现请求确实会一直打到这台有问题的机器上,因为我看到日志里有很多超时的异常信息。
  • 从监控上看,这台机器还是有一些成功的请求,这说明当时调用方跟服务之间的网络连接没有断开。因为如果连接断开之后,RPC 框架会把这个节点标识为“不健康”,不会被选出来用于发业务请求。
  • 深入进去看异常日志,我发现调用方到目标机器的定时心跳会有间歇性失败。
  • 从目标机器的监控上可以看到该机器的网络指标有异常,出问题时间点 TCP 重传数比正常高 10 倍以上。
有了对这四个线索的分析,我基本上可以得出这样的结论:那台问题服务器在某些时间段出现了网络故障,但也还能处理部分请求。换句话说,它处于半死不活的状态。但是(是转折,也是关键点),它还没彻底“死”,还有心跳,这样,调用方就觉得它还正常,所以就没有把它及时挪出健康状态列表。
 
3)健康检测的逻辑
应用健康状况不仅包括 TCP 连接状况,还包括应用本身是否存活,很多情况下 TCP 连接没有断开,但应用可能已经“僵死了”。
所以,业内常用的检测方法就是用心跳机制。心跳机制说起来也不复杂,其实就是服务调用方每隔一段时间就问一下服务提供方,“兄弟,你还好吧?”,然后服务提供方很诚实地告诉调用方它目前的状态。
节点的状态并不是固定不变的,它会根据心跳或者重连的结果来动态变化,具体状态间转换图如下:

 

 

  • 健康状态:建立连接成功,并且心跳探活也一直成功;
  • 亚健康状态:建立连接成功,但是心跳请求连续失败;
  • 死亡状态:建立连接失败。
首先,一开始初始化的时候,如果建立连接成功,那就是健康状态,否则就是死亡状态。这里没有亚健康这样的中间态。紧接着,如果健康状态的节点连续出现几次不能响应心跳请求的情况,那就会被标记为亚健康状态,也就是说,服务调用方会觉得它生病了。
生病之后(亚健康状态),如果连续几次都能正常响应心跳请求,那就可以转回健康状态,证明病好了。如果病一直好不了,那就会被断定为是死亡节点,死亡之后还需要善后,比如关闭连接。
当然,死亡并不是真正死亡,它还有复活的机会。如果某个时间点里,死亡的节点能够重连成功,那它就可以重新被标记为健康状态。
4)具体的解决方案
理解了服务健康检测的逻辑,我们再回到开头我描述的场景里,看看怎么优化。现在你理解了,一个节点从健康状态过渡到亚健康状态的前提是“连续”心跳失败次数必须到达某一个阈值,比如 3 次(具体看你怎么配置了)。
而我们的场景里,节点的心跳日志只是间歇性失败,也就是时好时坏,这样,失败次数根本没到阈值,调用方会觉得它只是“生病”了,并且很快就好了。那怎么解决呢?我还是建议你先停下来想想。
你是不是会脱口而出,说改下配置,调低阈值呗。是的,这是最快的解决方法,但是我想说,它治标不治本。第一,像前面说的那样,调用方跟服务节点之间网络状况瞬息万变,出现网络波动的时候会导致误判。第二,在负载高情况,服务端来不及处理心跳请求,由于心跳时间很短,会导致调用方很快触发连续心跳失败而造成断开连接。
我们回到问题的本源,核心是服务节点网络有问题,心跳间歇性失败。我们现在判断节点状态只有一个维度,那就是心跳检测,那是不是可以再加上业务请求的维度呢?
起码我当时是顺着这个方向解决问题的。但紧接着,我又发现了新的麻烦:
  • 调用方每个接口的调用频次不一样,有的接口可能 1 秒内调用上百次,有的接口可能半个小时才会调用一次,所以我们不能把简单的把总失败的次数当作判断条件。
  • 服务的接口响应时间也是不一样的,有的接口可能 1ms,有的接口可能是 10s,所以我们也不能把 TPS 至来当作判断条件。
和同事讨论之后,我们找到了可用率这个突破口,应该相对完美了。可用率的计算方式是某一个时间窗口内接口调用成功次数的百分比(成功次数 / 总调用次数)。当可用率低于某个比例就认为这个节点存在问题,把它挪到亚健康列表,这样既考虑了高低频的调用接口,也兼顾了接口响应时间不同的问题。

5)总结

10丨路由策略:怎么让请求按照设定的规则发到不同的节点上?

1)为什么选择路由策略

2)如何实现路由策略

我们可以重新回到调用方发起 RPC 调用的流程。在 RPC 发起真实请求的时候,有一个步骤就是从服务提供方节点集合里面选择一个合适的节点(就是我们常说的负载均衡),那我们是不是可以在选择节点前加上“筛选逻辑”,把符合我们要求的节点筛选出来。那这个筛选的规则是什么呢?就是我们前面说的灰度过程中要验证的规则。

举个具体例子你可能就明白了,比如我们要求新上线的节点只允许某个 IP 可以调用,那我们的注册中心会把这条规则下发到服务调用方。在调用方收到规则后,在选择具体要发请求的节点前,会先通过筛选规则过滤节点集合,按照这个例子的逻辑,最后会过滤出一个节点,这个节点就是我们刚才新上线的节点。通过这样的改造,RPC 调用流程就变成了这样:

这个筛选过程在我们的 RPC 里面有一个专业名词,就是“路由策略”,而上面例子里面的路由策略是我们常见的 IP 路由策略,用于限制可以调用服务提供方的 IP。使用了 IP 路由策略后,整个集群的调用拓扑如下图所示:

 

 3)参数路由

有了 IP 路由之后,上线过程中我们就可以做到只让部分调用方请求调用到新上线的实例,相对传统的灰度发布功能来说,这样做我们可以把试错成本降到最低。
但在有些场景下,我们可能还需要更细粒度的路由方式。比如,在升级改造应用的时候,为了保证调用方能平滑地切调用我们的新应用逻辑,在升级过程中我们常用的方式是让新老应用并行运行一段时间,然后通过切流量百分比的方式,慢慢增大新应用承接的流量,直到新应用承担了 100% 且运行一段时间后才能去下线老应用。
在流量切换的过程中,为了保证整个流程的完整性,我们必须保证某个主题对象的所有请求都使用同一种应用来承接。假设我们改造的是商品应用,那主题对象肯定是商品 ID,在切流量的过程中,我们必须保证某个商品的所有操作都是用新应用(或者老应用)来完成所有请求的响应。
很显然,上面的 IP 路由并不能满足我们这个需求,因为 IP 路由只是限制调用方来源,并不会根据请求参数请求到我们预设的服务提供方节点上去。
那我们怎么利用路由策略实现这个需求呢?其实你只要明白路由策略的本质,就不难明白这种参数路由的实现。
我们可以给所有的服务提供方节点都打上标签,用来区分新老应用节点。在服务调用方发生请求的时候,我们可以很容易地拿到请求参数,也就是我们例子中的商品 ID,我们可以根据注册中心下发的规则来判断当前商品 ID 的请求是过滤掉新应用还是老应用的节点。因为规则对所有的调用方都是一样的,从而保证对应同一个商品 ID 的请求要么是新应用的节点,要么是老应用的节点。使用了参数路由策略后,整个集群的调用拓扑如下图所示:

 

 

相比 IP 路由,参数路由支持的灰度粒度更小,他为服务提供方应用提供了另外一个服务治理的手段。灰度发布功能是 RPC 路由功能的一个典型应用场景,通过 RPC 路由策略的组合使用可以让服务提供方更加灵活地管理、调用自己的流量,进一步降低上线可能导致的风险。
4)总结
在日常工作中,我们几乎每天都在做线上变更,每次变更都有可能带来一次事故,为了降低事故发生的概率,我们不光要从流程上优化操作步骤,还要使我们的基础设施能支持更低的试错成本。
灰度发布功能作为 RPC 路由功能的一个典型应用场景,我们可以通过路由功能完成像定点调用、黑白名单等一些高级服务治理功能。在 RPC 里面,不管是哪种路由策略,其核心思想都是一样的,就是让请求按照我们设定的规则发送到目标节点上,从而实现流量隔离的效果。

11丨负载均衡:节点负载差距这么大,为什么收到的流量还一样?

 1)一个需求
在进入主题之前,我想先和你分享一个需求,这是我们公司的业务部门给我们提的。 
他们反馈的问题是这样的:有一次碰上流量高峰,他们突然发现线上服务的可用率降低了,经过排查发现,是因为其中有几台机器比较旧了。当时最早申请的一批容器配置比较低,缩容的时候留下了几台,当流量达到高峰时,这几台容器由于负载太高,就扛不住压力了。业务问我们有没有好的服务治理策略?

 

这个问题其实挺好解决的,我们当时给出的方案是:在治理平台上调低这几台机器的权重,这样的话,访问的流量自然就减少了。

但业务接着反馈了,说:当他们发现服务可用率降低的时候,业务请求已经受到影响了,这时再如此解决,需要时间啊,那这段时间里业务可能已经有损失了。紧接着他们就提出了需求,问:RPC 框架有没有什么智能负载的机制?能否及时地自动控制服务节点接收到的访问量?

这个需求其实很合理,这也是一个比较普遍的问题。确实,虽说我们的服务治理平台能够动态地控制线上服务节点接收的访问量,但当业务方发现部分机器负载过高或者响应变慢的时候再去调整节点权重,真的很可能已经影响到线上服务的可用率了。

看到这儿,你有没有想到什么好的处理方案呢?接下来,我们就以这个问题为背景,一起看看 RPC 框架的负载均衡。

2)负载均衡

我先来简单地介绍下负载均衡。当我们的一个服务节点无法支撑现有的访问量时,我们会部署多个节点,组成一个集群,然后通过负载均衡,将请求分发给这个集群下的每个服务节点,从而达到多个服务节点共同分担请求压力的目的。
负载均衡主要分为软负载和硬负载,软负载就是在一台或多台服务器上安装负载均衡的软件,如 LVS、Nginx 等,硬负载就是通过硬件设备来实现的负载均衡,如 F5 服务器等。负载均衡的算法主要有随机法、轮询法、最小连接法等。

我刚才介绍的负载均衡主要还是应用在 Web 服务上,Web 服务的域名绑定负载均衡的地址,通过负载均衡将用户的请求分发到一个个后端服务上。

3)RPC中的负载均衡

那 RPC 框架中的负载均衡是不是也是如此呢?和我上面讲的负载均衡,你觉得会有区别吗?

 

 RPC 负载均衡策略一般包括随机权重、Hash、轮询。当然,这还是主要看 RPC 框架自身的实现。其中的随机权重策略应该是我们最常用的一种了,通过随机算法,我们基本可以保证每个节点接收到的请求流量是均匀的;同时我们还可以通过控制节点权重的方式,来进行流量控制。比如我们默认每个节点的权重都是 100,但当我们把其中的一个节点的权重设置成 50 时,它接收到的流量就是其他节点的 1/2。

4)如何设计自适应的负载均衡

我刚才讲过,RPC 的负载均衡完全由 RPC 框架自身实现,服务调用者发起请求时,会通过配置的负载均衡插件,自主地选择服务节点。那是不是只要调用者知道每个服务节点处理请求的能力,再根据服务处理节点处理请求的能力来判断要打给它多少流量就可以了?当一个服务节点负载过高或响应过慢时,就少给它发送请求,反之则多给它发送请求。

那服务调用者节点又该如何判定一个服务节点的处理能力呢?

这里我们可以采用一种打分的策略,服务调用者收集与之建立长连接的每个服务节点的指标数据,如服务节点的负载指标、CPU 核数、内存大小、请求处理的耗时指标(如请求平均耗时、TP99、TP999)、服务节点的状态指标(如正常、亚健康)。通过这些指标,计算出一个分数,比如总分 10 分,如果 CPU 负载达到 70%,就减它 3 分,当然了,减 3 分只是个类比,需要减多少分是需要一个计算策略的。

我们又该如果根据这些指标来打分呢?

这就有点像公司对员工进行年终考核。假设我是老板,我要考核专业能力、沟通能力和工作态度,这三项的占比分别是 30%、30%、40%,我给一个员工的评分是 10、8、8,那他的综合分数就是这样计算的:10*30%+8*30%+8*40%=8.6 分。
给服务节点打分也一样,我们可以为每个指标都设置一个指标权重占比,然后再根据这些指标数据,计算分数。
服务调用者给每个服务节点都打完分之后,会发送请求,那这时候我们又该如何根据分数去控制给每个服务节点发送多少流量呢?
我们可以配合随机权重的负载均衡策略去控制,通过最终的指标分数修改服务节点最终的权重。例如给一个服务节点综合打分是 8 分(满分 10 分),服务节点的权重是 100,那么计算后最终权重就是 80(100*80%)。服务调用者发送请求时,会通过随机权重的策略来选择服务节点,那么这个节点接收到的流量就是其他正常节点的 80%(这里假设其他节点默认权重都是 100,且指标正常,打分为 10 分的情况)。
到这儿,一个自适应的负载均衡我们就完成了,整体的设计方案如下图所示:
关键步骤我来解释下:
  • 添加服务指标收集器,并将其作为插件,默认有运行时状态指标收集器、请求耗时指标收集器。
  • 运行时状态指标收集器收集服务节点 CPU 核数、CPU 负载以及内存等指标,在服务调用者与服务提供者的心跳数据中获取。
  • 请求耗时指标收集器收集请求耗时数据,如平均耗时、TP99、TP999 等。
  • 可以配置开启哪些指标收集器,并设置这些参考指标的指标权重,再根据指标数据和指标权重来综合打分。
  • 通过服务节点的综合打分与节点的权重,最终计算出节点的最终权重,之后服务调用者会根据随机权重的策略,来选择服务节点。 

12丨异常重试:在约定时间内安全可靠地重试

1)为什么要异常重试

网络抖动导致请求失败。

2)RPC 框架的重试机制

 

 

在使用 RPC 框架的时候,我们要确保被调用的服务的业务逻辑是幂等的,这样我们才能考虑根据事件情况开启 RPC 框架的异常重试功能。这一点你要格外注意,这算是一个高频误区了。

3)何在约定时间内安全可靠地重试?

连续的异常重试可能会出现一种不可靠的情况,那就是连续的异常重试并且每次处理的请求时间比较长,最终会导致请求处理的时间过长,超出用户设置的超时时间。

解决这个问题最直接的方式就是,在每次重试后都重置一下请求的超时时间。
当调用端发起 RPC 请求时,如果发送请求发生异常并触发了异常重试,我们可以先判定下这个请求是否已经超时,如果已经超时了就直接返回超时异常,否则就先重置下这个请求的超时时间,之后再发起重试。
那么解决了因多次异常重试引发的超时时间失效的问题,这个重试机制是不是就完全可靠了呢?
我们接着考虑,当调用端设置了异常重试策略,发起了一次 RPC 调用,通过负载均衡选择了节点,将请求消息发送到这个节点,这时这个节点由于负载压力较大,导致这个请求处理失败了,调用端触发了重试,再次通过负载均衡选择了一个节点,结果恰好仍选择了这个节点,那么在这种情况下,重试的效果是否受影响了呢?
当然有影响。因此,我们需要在所有发起重试、负载均衡选择节点的时候,去掉重试之前出现过问题的那个节点,以保证重试的成功率。
那我们现在再完整地回顾一下,考虑了业务逻辑必须是幂等的、超时时间需要重置以及去掉有问题的服务节点后,这样的异常重试机制,还有没有可优化的地方呢?
我刚才讲过,RPC 框架的异常重试机制,是调用端发送请求之后,如果发送失败会捕获异常,触发重试,但并不是所有的异常都会触发重试的,只有 RPC 框架中特定的异常才会如此,比如连接异常、超时异常。

13丨优雅关闭:如何避免服务停机带来的业务损失?

1)关闭为什么会有问题

在重启服务的过程中,RPC 怎么做到让调用方系统不出问题呢?

 

在服务重启的时候,对于调用方来说,这时候可能会存在以下几种情况:

  • 调用方发请求前,目标服务已经下线。对于调用方来说,跟目标节点的连接会断开,这时候调用方可以立马感知到,并且在其健康列表里面会把这个节点挪掉,自然也就不会被负载均衡选中。
  • 调用方发请求的时候,目标服务正在关闭,但调用方并不知道它正在关闭,而且两者之间的连接也没断开,所以这个节点还会存在健康列表里面,因此该节点就有一定概率会被负载均衡选中。
 2)关闭流程
这时候你可能会想到,我是不是在重启服务机器前,先通过“某种方式”把要下线的机器从调用方维护的“健康列表”里面删除就可以了,这样负载均衡就选不到这个节点了?你说得一点都没错,但这个具体的“某种方式”是怎么完成呢?
这时候,可能你还会想到,RPC 里面不是有服务发现吗?它的作用不就是用来“实时”感知服务提供方的状态吗?当服务提供方关闭前,是不是可以先通知注册中心进行下线,然后通过注册中心告诉调用方进行节点摘除?关闭流程如下图所示:

 

这样不就可以实现不通过“人肉”的方式,从而达到一种自动化方式,但这么做就能完全保证实现无损上下线吗?

如上图所示,整个关闭过程中依赖了两次 RPC 调用,一次是服务提供方通知注册中心下线操作,一次是注册中心通知服务调用方下线节点操作。注册中心通知服务调用方都是异步的,我们在“服务发现”一讲中讲过在大规模集群里面,服务发现只保证最终一致性,并不保证实时性,所以注册中心在收到服务提供方下线的时候,并不能成功保证把这次要下线的节点推送到所有的调用方。所以这么来看,通过服务发现并不能做到应用无损关闭。
不能强依赖“服务发现”来通知调用方要下线的机器,那服务提供方自己来通知行不行?因为在 RPC 里面调用方跟服务提供方之间是长连接,我们可以在提供方应用内存里面维护一份调用方连接集合,当服务要关闭的时候,挨个去通知调用方去下线这台机器。这样整个调用链路就变短了,对于每个调用方来说就一次 RPC,可以确保调用的成功率很高。大部分场景下,这么做确实没有问题,我们之前也是这么实现的,但是我们发现线上还是会偶尔会出现,因为服务提供方上线而导致调用失败的问题。
那到底哪里出问题了呢?我后面分析了调用方请求日志跟收到关闭通知的日志,并且发现了一个线索如下:出问题请求的时间点跟收到服务提供方关闭通知的时间点很接近,只比关闭通知的时间早不到 1ms,如果再加上网络传输时间的话,那服务提供方收到请求的时候,它应该正在处理关闭逻辑。这就说明服务提供方关闭的时候,并没有正确处理关闭后接收到的新请求。

3)优雅关闭

知道了根本原因,问题就很好解决了。因为服务提供方已经开始进入关闭流程,那么很多对象就可能已经被销毁了,关闭后再收到的请求按照正常业务请求来处理,肯定是没法保证能处理的。所以我们可以在关闭的时候,设置一个请求“挡板”,挡板的作用就是告诉调用方,我已经开始进入关闭流程了,我不能再处理你这个请求了。

基于这个思路,我们可以这么处理:当服务提供方正在关闭,如果这之后还收到了新的业务请求,服务提供方直接返回一个特定的异常给调用方(比如 ShutdownException)。这个异常就是告诉调用方“我已经收到这个请求了,但是我正在关闭,并没有处理这个请求”,然后调用方收到这个异常响应后,RPC 框架把这个节点从健康列表挪出,并把请求自动重试到其他节点,因为这个请求是没有被服务提供方处理过,所以可以安全地重试到其他节点,这样就可以实现对业务无损。

但如果只是靠等待被动调用,就会让这个关闭过程整体有点漫长。因为有的调用方那个时刻没有业务请求,就不能及时地通知调用方了,所以我们可以加上主动通知流程,这样既可以保证实时性,也可以避免通知失败的情况。

说到这里,我知道你肯定会问,那要怎么捕获到关闭事件呢?

在我的经验里,可以通过捕获操作系统的进程信号来获取,在 Java 语言里面,对应的是Runtime.addShutdownHook 方法,可以注册关闭的钩子。在 RPC 启动的时候,我们提前注册关闭钩子,并在里面添加了两个处理程序,一个负责开启关闭标识,一个负责安全关闭服务对象,服务对象在关闭的时候会通知调用方下线节点。同时需要在我们调用链里面加上挡板处理器,当新的请求来的时候,会判断关闭标识,如果正在关闭,则抛出特定异常。

看到这里,感觉问题已经比较好地被解决了。但细心的同学可能还会提出问题,关闭过程中已经在处理的请求会不会受到影响呢?

如果进程结束过快会造成这些请求还没有来得及应答,同时调用方会也会抛出异常。为了尽可能地完成正在处理的请求,首先我们要把这些请求识别出来。这就好比日常生活中,我们经常看见停车场指示牌上提示还有多少剩余车位,这个是如何做到的呢?如果仔细观察一下,你就会发现它是每进入一辆车,剩余车位就减一,每出来一辆车,剩余车位就加一。我们也可以利用这个原理在服务对象加上引用计数器,每开始处理请求之前加一,完成请求处理减一,通过该计数器我们就可以快速判断是否有正在处理的请求。

服务对象在关闭过程中,会拒绝新的请求,同时根据引用计数器等待正在处理的请求全部结束之后才会真正关闭。但考虑到有些业务请求可能处理时间长,或者存在被挂住的情况,为了避免一直等待造成应用无法正常退出,我们可以在整个 ShutdownHook 里面,加上超时时间控制,当超过了指定时间没有结束,则强制退出应用。超时时间我建议可以设定成10s,基本可以确保请求都处理完了。整个流程如下图所示。
 

 

 4)总结

在 RPC 里面,关闭虽然看似不属于 RPC 主流程,但如果我们不能处理得很好的话,可能就会导致调用方业务异常,从而需要我们加入很多额外的运维工作。一个好的关闭流程,可以确保使用我们框架的业务实现平滑的上下线,而不用担心重启导致的问题。

其实“优雅关闭”这个概念除了在 RPC 里面有,在很多框架里面也都挺常见的,比如像我们经常用的应用容器框架 Tomcat。Tomcat 关闭的时候也是先从外层到里层逐层进行关闭,先保证不接收新请求,然后再处理关闭前收到的请求。

14丨优雅启动:如何避免流量打到没有启动完成的节点?

今天要和你分享的重点,RPC 里面的一个实用功能——启动预热。

1)启动预热

那什么叫启动预热呢?

简单来说,就是让刚启动的服务提供方应用不承担全部的流量,而是让它被调用的次数随着时间的移动慢慢增加,最终让流量缓和地增加到跟已经运行一段时间后的水平一样。

那在 RPC 里面,我们该怎么实现这个功能呢?

我们现在是要控制调用方发送到服务提供方的流量。我们可以先简单地回顾下调用方发起的RPC 调用流程是怎样的,调用方应用通过服务发现能够获取到服务提供方的 IP 地址,然后每次发送请求前,都需要通过负载均衡算法从连接池中选择一个可用连接。那这样的话,我们是不是就可以让负载均衡在选择连接的时候,区分一下是否是刚启动不久的应用?对于刚启动的应用,我们可以让它被选择到的概率特别低,但这个概率会随着时间的推移慢慢变大,从而实现一个动态增加流量的过程。

现在方案有了,我们就可以考虑具体实现了。
首先对于调用方来说,我们要知道服务提供方启动的时间,这个怎么获取呢?我这里给出两种方法,一种是服务提供方在启动的时候,把自己启动的时间告诉注册中心;另外一种就是注册中心收到的服务提供方的请求注册时间。这两个时间我认为都可以,不过可能你会犹豫我们该怎么确保所有机器的日期时间是一样的?这其实不用太关心,因为整个预热过程的时间是一个粗略值,即使机器之间的日期时间存在 1 分钟的误差也不影响,并且在真实环境中机器都会默认开启 NTP 时间同步功能,来保证所有机器时间的一致性。
不管你是选择哪个时间,最终的结果就是,调用方通过服务发现,除了可以拿到 IP 列表,还可以拿到对应的启动时间。我们需要把这个时间作用在负载均衡上,在[第 11 讲] 我们介绍过一种基于权重的负载均衡,但是这个权重是由服务提供方设置的,属于一个固定状态。现在我们要让这个权重变成动态的,并且是随着时间的推移慢慢增加到服务提供方设定的固定值,整个过程如下图所示:

 

通过这个小逻辑的改动,我们就可以保证当服务提供方运行时长小于预热时间时,对服务提供方进行降权,减少被负载均衡选择的概率,避免让应用在启动之初就处于高负载状态,从而实现服务提供方在启动后有一个预热的过程。

看到这儿,你可能还会有另外一个疑问,就是当我在大批量重启服务提供方的时候,会不会导致没有重启的机器因为扛的流量太大而出现问题?

关于这个问题,我是这么考虑的。当你大批量重启服务提供方的时候,对于调用方来说,这些刚重启的机器权重基本是一样的,也就是说这些机器被选中的概率是一样的,大家都是一样得低,也就不存在权重区分的问题了。但是对于那些没有重启过的应用提供方来说,它们被负载均衡选中的概率是相对较高的,但是我们可以通过[第 11 讲] 学到的自适应负载的方法平缓地切换,所以也是没有问题的。
启动预热更多是从调用方的角度出发,去解决服务提供方应用冷启动的问题,让调用方的请求量通过一个时间窗口过渡,慢慢达到一个正常水平,从而实现平滑上线。但对于服务提供方本身来说,有没有相关方案可以实现这种效果呢?
当然有,这也是我今天要分享的另一个重点,和热启动息息相关,那就是延迟暴露。
2)延迟暴露

我们应用启动的时候都是通过 main 入口,然后顺序加载各种相关依赖的类。以 Spring 应用启动为例,在加载的过程中,Spring 容器会顺序加载 Spring Bean,如果某个 Bean 是 RPC 服务的话,我们不光要把它注册到 Spring-BeanFactory 里面去,还要把这个 Bean 对应的接口注册到注册中心。注册中心在收到新上线的服务提供方地址的时候,会把这个地址推送到调用方应用内存中;当调用方收到这个服务提供方地址的时候,就会去建立连接发请求。

但这时候是不是存在服务提供方可能并没有启动完成的情况?因为服务提供方应用可能还在加载其它的 Bean。对于调用方来说,只要获取到了服务提供方的 IP,就有可能发起 RPC 调用,但如果这时候服务提供方没有启动完成的话,就会导致调用失败,从而使业务受损。 

那有什么办法可以避免这种情况吗?

在解决问题前,我们先看下出现上述问题的根本原因。这是因为服务提供方应用在没有启动完成的时候,调用方的请求就过来了,而调用方请求过来的原因是,服务提供方应用在启动过程中把解析到的 RPC 服务注册到了注册中心,这就导致在后续加载没有完成的情况下服务提供方的地址就被服务调用方感知到了。

这样的话,其实我们就可以把接口注册到注册中心的时间挪到应用启动完成后。具体的做法就是在应用启动加载、解析 Bean 的时候,如果遇到了 RPC 服务的 Bean,只先把这个 Bean 注册到 Spring-BeanFactory 里面去,而并不把这个 Bean 对应的接口注册到注册中心,只有等应用启动完成后,才把接口注册到注册中心用于服务发现,从而实现让服务调用方延迟获取到服务提供方地址。
这样是可以保证应用在启动完后才开始接入流量的,但其实这样做,我们还是没有实现最开始的目标。因为这时候应用虽然启动完成了,但并没有执行相关的业务代码,所以 JVM 内存里面还是冷的。如果这时候大量请求过来,还是会导致整个应用在高负载模式下运行,从而导致不能及时地返回请求结果。而且在实际业务中,一个服务的内部业务逻辑一般会依赖其它资源的,比如缓存数据。如果我们能在服务正式提供服务前,先完成缓存的初始化操作,而不是等请求来了之后才去加载,我们就可以降低重启后第一次请求出错的概率。
那具体怎么实现呢?
我们还是需要利用服务提供方把接口注册到注册中心的那段时间。我们可以在服务提供方应用启动后,接口注册到注册中心前,预留一个 Hook 过程,让用户可以实现可扩展的Hook 逻辑。用户可以在 Hook 里面模拟调用逻辑,从而使 JVM 指令能够预热起来,并且用户也可以在 Hook 里面事先预加载一些资源,只有等所有的资源都加载完成后,最后才把接口注册到注册中心。整个应用启动过程如下图所示:
3)总结
包括[第 11 讲] 在内,到今天为止,我们就已经把整个 RPC 里面的启停机流程都讲完了。就像前面说过的那样,虽然启停机流程看起来不属于 RPC 主流程,但是如果你能在RPC 里面把这些“微小”的工作做好,就可以让你的技术团队感受到更多的微服务带来的好处。另外,我们今天的两大重点——启动预热与延迟暴露,它们并不是 RPC 的专属功能,我们在开发其它系统时,也可以利用这两点来减少冷启动对业务的影响。

15丨熔断限流:业务如何实现自我保护

1)为什么需要自我保护?

我在开篇词中说过,RPC 是解决分布式系统通信问题的一大利器,而分布式系统的一大特点就是高并发,所以说 RPC 也会面临高并发的场景。在这样的情况下,我们提供服务的每个服务节点就都可能由于访问量过大而引起一系列的问题,比如业务处理耗时过长、CPU 飘高、频繁 Full GC 以及服务进程直接宕机等等。但是在生产环境中,我们要保证服务的稳定性和高可用性,这时我们就需要业务进行自我保护,从而保证在高访问量、高并发的场景下,应用系统依然稳定,服务依然高可用。
2)那么在使用 RPC 时,业务又如何实现自我保护呢?
最常见的方式就是限流了,简单有效,但 RPC 框架的自我保护方式可不只有限流,并且RPC 框架的限流方式可以是多种多样的。我们可以将 RPC 框架拆开来分析,RPC 调用包括服务端和调用端,调用端向服务端发起调用。下面我就分享一下服务端与调用端分别是如何进行自我保护的。
3)服务端的自我保护
我们先看服务端,举个例子,假如我们要发布一个 RPC 服务,作为服务端接收调用端发送过来的请求,这时服务端的某个节点负载压力过高了,我们该如何保护这个节点?

 

这个问题还是很好解决的,既然负载压力高,那就不让它再接收太多的请求就好了,等接收和处理的请求数量下来后,这个节点的负载压力自然就下来了。

那么就是限流吧?是的,在 RPC 调用中服务端的自我保护策略就是限流,那你有没有想过我们是如何实现限流的呢?是在服务端的业务逻辑中做限流吗?有没有更优雅的方式?

限流是一个比较通用的功能,我们可以在 RPC 框架中集成限流的功能,让使用方自己去配置限流阈值;我们还可以在服务端添加限流逻辑,当调用端发送请求过来时,服务端在执行业务逻辑之前先执行限流逻辑,如果发现访问量过大并且超出了限流的阈值,就让服务端直接抛回给调用端一个限流异常,否则就执行正常的业务逻辑。
 

 

那服务端的限流逻辑又该如何实现呢?

方式有很多,比如最简单的计数器,还有可以做到平滑限流的滑动窗口、漏斗算法以及令牌桶算法等等。其中令牌桶算法最为常用。上述这几种限流算法我就不一一讲解了,资料很多,不太清楚的话自行查阅下就可以了。

我们可以假设下这样一个场景:我发布了一个服务,提供给多个应用的调用方去调用,这时有一个应用的调用方发送过来的请求流量要比其它的应用大很多,这时我们就应该对这个应用下的调用端发送过来的请求流量进行限流。所以说我们在做限流的时候要考虑应用级别的维度,甚至是 IP 级别的维度,这样做不仅可以让我们对一个应用下的调用端发送过来的请求流量做限流,还可以对一个 IP 发送过来的请求流量做限流。

这时你可能会想,使用方该如何配置应用维度以及 IP 维度的限流呢?在代码中配置是不是不大方便?我之前说过,RPC 框架真正强大的地方在于它的治理功能,而治理功能大多都需要依赖一个注册中心或者配置中心,我们可以通过 RPC 治理的管理端进行配置,再通过注册中心或者配置中心将限流阈值的配置下发到服务提供方的每个节点上,实现动态配置。
看到这儿,你有没有发现,在服务端实现限流,配置的限流阈值是作用在每个服务节点上的。比如说我配置的阈值是每秒 1000 次请求,那么就是指一台机器每秒处理 1000 次请求;如果我的服务集群拥有 10 个服务节点,那么我提供的服务限流阈值在最理想的情况下就是每秒 10000 次。
 
接着看这样一个场景:我提供了一个服务,而这个服务的业务逻辑依赖的是 MySQL 数据库,由于 MySQL 数据库的性能限制,我们是需要对其进行保护。假如在 MySQL 处理业务逻辑中,SQL 语句的能力是每秒 10000 次,那么我们提供的服务处理的访问量就不能超过每秒 10000 次,而我们的服务有 10 个节点,这时我们配置的限流阈值应该是每秒 1000次。那如果之后因为某种需求我们对这个服务扩容了呢?扩容到 20 个节点,我们是不是就要把限流阈值调整到每秒 500 次呢?这样操作每次都要自己去计算,重新配置,显然太麻烦了。
我们可以让 RPC 框架自己去计算,当注册中心或配置中心将限流阈值配置下发的时候,我们可以将总服务节点数也下发给服务节点,之后由服务节点自己计算限流阈值,这样就解决问题了吧?
解决了一部分,还有一个问题存在,那就是在实际情况下,一个服务节点所接收到的访问量并不是绝对均匀的,比如有 20 个节点,而每个节点限流的阈值是 500,其中有的节点访问量已经达到阈值了,但有的节点可能在这一秒内的访问量是 450,这时调用端发送过来的总调用量还没有达到 10000 次,但可能也会被限流,这样是不是就不精确了?那有没有比较精确的限流方式呢?
我刚才讲解的限流方式之所以不精确,是因为限流逻辑是服务集群下的每个节点独立去执行的,是一种单机的限流方式,而且每个服务节点所接收到的流量并不是绝对均匀的。
我们可以提供一个专门的限流服务,让每个节点都依赖一个限流服务,当请求流量打过来时,服务节点触发限流逻辑,调用这个限流服务来判断是否到达了限流阈值。我们甚至可以将限流逻辑放在调用端,调用端在发出请求时先触发限流逻辑,调用限流服务,如果请求量已经到达了限流阈值,请求都不需要发出去,直接返回给动态代理一个限流异常即可。
这种限流方式可以让整个服务集群的限流变得更加精确,但也由于依赖了一个限流服务,它在性能和耗时上与单机的限流方式相比是有很大劣势的。至于要选择哪种限流方式,就要结合具体的应用场景进行选择了。
4)调用端的自我保护
刚才我讲解了服务端如何进行自我保护,最简单有效的方式就是限流。那么调用端呢?调用端是否需要自我保护呢?
举个例子,假如我要发布一个服务 B,而服务 B 又依赖服务 C,当一个服务 A 来调用服务B 时,服务 B 的业务逻辑调用服务 C,而这时服务 C 响应超时了,由于服务 B 依赖服务C,C 超时直接导致 B 的业务逻辑一直等待,而这个时候服务 A 在频繁地调用服务 B,服务 B 就可能会因为堆积大量的请求而导致服务宕机。
由此可见,服务 B 调用服务 C,服务 C 执行业务逻辑出现异常时,会影响到服务 B,甚至可能会引起服务 B 宕机。这还只是 A->B->C 的情况,试想一下 A->B->C->D->......呢?在整个调用链中,只要中间有一个服务出现问题,都可能会引起上游的所有服务出现一系列的问题,甚至会引起整个调用链的服务都宕机,这是非常恐怖的。所以说,在一个服务作为调用端调用另外一个服务时,为了防止被调用的服务出现问题而影响到作为调用端的这个服务,这个服务也需要进行自我保护。而最有效的自我保护方式就是熔断。
所以说,在一个服务作为调用端调用另外一个服务时,为了防止被调用的服务出现问题而影响到作为调用端的这个服务,这个服务也需要进行自我保护。而最有效的自我保护方式就是熔断。

 

我们可以先了解下熔断机制。

熔断器的工作机制主要是关闭、打开和半打开这三个状态之间的切换。在正常情况下,熔断器是关闭的;当调用端调用下游服务出现异常时,熔断器会收集异常指标信息进行计算,当达到熔断条件时熔断器打开,这时调用端再发起请求是会直接被熔断器拦截,并快速地执行失败逻辑;当熔断器打开一段时间后,会转为半打开状态,这时熔断器允许调用端发送一个请求给服务端,如果这次请求能够正常地得到服务端的响应,则将状态置为关闭状态,否则设置为打开。

了解完熔断机制,你就会发现,在业务逻辑中加入熔断器其实是不够优雅的。那么在 RPC框架中,我们该如何整合熔断器呢?

熔断机制主要是保护调用端,调用端在发出请求的时候会先经过熔断器。我们可以回想下RPC 的调用流程:

 

你看图的话,有没有想到在哪个步骤整合熔断器会比较合适呢?

我的建议是动态代理,因为在 RPC 调用的流程中,动态代理是 RPC 调用的第一个关口。在发出请求时先经过熔断器,如果状态是闭合则正常发出请求,如果状态是打开则执行熔断器的失败策略。

5)总结

今天我们主要讲解了 RPC 框架是如何实现业务的自我保护。
服务端主要是通过限流来进行自我保护,我们在实现限流时要考虑到应用和 IP 级别,方便我们在服务治理的时候,对部分访问量特别大的应用进行合理的限流;服务端的限流阈值配置都是作用于单机的,而在有些场景下,例如对整个服务设置限流阈值,服务进行扩容时,限流的配置并不方便,我们可以在注册中心或配置中心下发限流阈值配置的时候,将总服务节点数也下发给服务节点,让 RPC 框架自己去计算限流阈值;我们还可以让 RPC 框架的限流模块依赖一个专门的限流服务,对服务设置限流阈值进行精准地控制,但是这种方式依赖了限流服务,相比单机的限流方式,在性能和耗时上有劣势。
调用端可以通过熔断机制进行自我保护,防止调用下游服务出现异常,或者耗时过长影响调用端的业务逻辑,RPC 框架可以在动态代理的逻辑中去整合熔断器,实现 RPC 框架的熔断功能。

16丨业务分组:如何隔离流量?

那说起突发流量,限流固然是一种手段,但其实面对复杂的业务以及高并发场景时,我们还有别的手段,可以最大限度地保障业务无损,那就是隔离流量。这也是我今天重点要和你分享的内容,接下来我们就一起看看分组在 RPC 中的应用。

1)为什么需要分组

在我们的日常开发中,我们不都提倡让用户使用起来越简单越好吗?如果在接口上再加一个分组维度去管理,不就让事情变复杂了吗?

同样的道理,我们用在 RPC 治理上也是一样的。假设你是一个服务提供方应用的负责人,在早期业务量不大的情况下,应用之间的调用关系并不会复杂,请求量也不会很大,我们的应用有足够的能力扛住日常的所有流量。我们并不需要花太多的时间去治理调用请求过来的流量,我们通常会选择最简单的方法,就是把服务实例统一管理,把所有的请求都用一个共享的“大池子”来处理。这就类似于“简单道路时期”,服务调用方跟服务提供方之间的调用拓扑如下图所示:无隔离调用拓扑
 

 

后期因为业务发展丰富了,调用你接口的调用方就会越来越多,流量也会渐渐多起来。可能某一天,一个“爆炸式惊喜”就来了。其中一个调用方的流量突然激增,让你整个集群瞬间处于高负载运行,进而影响到其它调用方,导致它们的整体可用率下降。而这时候作为应用负责人的你,那就得变身“救火队长”了,要想尽各种办法来保证应用的稳定。

在经过一系列的救火操作后,我们肯定要去想更好的应对办法。那回到问题的根本去看,关键就在于,早期为了管理方便,我们把接口都放到了同一个分组下面,所有的服务实例是以一个整体对外提供能力的。

但后期因为业务发展,这种粗暴的管理模式已经不适用了,这就好比“汽车来了,我们的交通网也得抓紧建设”一样,让人车分流。此时,道路上的人和车就好比我们应用的调用方,我们可以尝试把应用提供方这个大池子划分出不同规格的小池子,再分配给不同的调用方,而不同小池子之间的隔离带,就是我们在 RPC 里面所说的分组,它可以实现流量隔离。

2)怎么实现分组

现在分组是怎么回事我们搞清楚了,那放到 RPC 里我们该怎么实现呢?

既然是要求不同的调用方应用能拿到的池子内容不同,那我们就要回想下服务发现了,因为在 RPC 流程里,能影响到调用方获取服务节点的逻辑就是它了。

在[第 08 讲] 我们说过,服务调用方是通过接口名去注册中心找到所有的服务节点来完成服务发现的,那换到这里的话,这样做其实并不合适,因为这样调用方会拿到所有的服务节点。因此为了实现分组隔离逻辑,我们需要重新改造下服务发现的逻辑,调用方去获取服务节点的时候除了要带着接口名,还需要另外加一个分组参数,相应的服务提供方在注册的时候也要带上分组参数。

通过改造后的分组逻辑,我们可以把服务提供方所有的实例分成若干组,每一个分组可以提供给单个或者多个不同的调用方来调用。那怎么分组好呢,有没有统一的标准?

坦白讲,这个分组并没有一个可衡量的标准,但我自己总结了一个规则可以供你参考,就是按照应用重要级别划分。

非核心应用不要跟核心应用分在同一个组,核心应用之间应该做好隔离,一个重要的原则就是保障核心应用不受影响。比如提供给电商下单过程中用的商品信息接口,我们肯定是需要独立出一个单独分组,避免受其它调用方污染的。有了分组之后,我们的服务调用方跟服务提供方之间的调用拓扑就如下图所示:
分组调用拓扑通过分组的方式隔离调用方的流量,从而避免因为一个调用方出现流量激增而影响其它调用方的可用率。对服务提供方来说,这种方式是我们日常治理服务过程中一个高频使用的手段,那通过这种分组进行流量隔离,对调用方应用会不会有影响呢?
3)如何实现高可用?
分组隔离后,单个调用方在发 RPC 请求的时候可选择的服务节点数相比没有分组前减少了,那对于单个调用方来说,出错的概率就升高了。比如一个集中交换机设备突然坏了,而这个调用方的所有服务节点都在这个交换机下面,在这种情况下对于服务调用方来说,它的请求无论如何也到达不了服务提供方,从而导致这个调用方业务受损。
 
那有没有更高可用一点的方案呢?回到我们前面说的那个马路例子上,正常情况下我们是必须让车在车道行驶,人在人行道上行走。但当人行道或者车道出现抢修的时候,在条件允许的情况下,我们一般都是允许对方借道行驶一段时间,直到道路完全恢复。
我们同样可以把这个特性用到我们的 RPC 中,要怎么实现呢?
 
在前面我们也说了,调用方应用服务发现的时候,除了带上对应的接口名,还需要带上一个特定分组名,所以对于调用方来说,它是拿不到其它分组的服务节点的,那这样的话调用方就没法建立起连接发请求了。
因此问题的核心就变成了调用方要拿到其它分组的服务节点,但是又不能拿到所有的服务节点,否则分组就没有意义了。一个最简单的办法就是,允许调用方可以配置多个分组。但这样的话,这些节点对于调用方来说就都是一样的了,调用方可以随意选择获取到的所有节点发送请求,这样就又失去了分组隔离的意义,并且还没有实现我们想要的“借道”的效果。
所以我们还需要把配置的分组区分下主次分组,只有在主分组上的节点都不可用的情况下才去选择次分组节点;只要主分组里面的节点恢复正常,我们就必须把流量都切换到主节点上,整个切换过程对于应用层完全透明,从而在一定程度上保障调用方应用的高可用。
4)总结
今天我们通过一个道路划分的案例,引出了在 RPC 里面我们可以通过分组的方式人为地给不同的调用方划分出不同的小集群,从而实现调用方流量隔离的效果,保障我们的核心业务不受非核心业务的干扰。但我们在考虑问题的时候,不能顾此失彼,不能因为新加一个的功能而影响到原有系统的稳定性。
其实我们不仅可以通过分组把服务提供方划分成不同规模的小集群,我们还可以利用分组完成一个接口多种实现的功能。正常情况下,为了方便我们自己管理服务,我一般都会建议每个接口完成的功能尽量保证唯一。但在有些特殊场景下,两个接口也会完全一样,只是具体实现上有那么一点不同,那么我们就可以在服务提供方应用里面同时暴露两个相同接口,但只是接口分组不一样罢了。

答疑课堂丨基础篇与进阶篇思考题答案合集

第二讲思考题:在 RPC 里面,我们是怎么实现请求跟响应关联的?

首先我们要弄清楚为什么要把请求与响应关联。这是因为在 RPC 调用过程中,调用端会向服务端发送请求消息,之后它还会收到服务端发送回来的响应消息,但这两个操作并不是同步进行的。在高并发的情况下,调用端可能会在某一时刻向服务端连续发送很多条消息之后,才会陆续收到服务端发送回来的各个响应消息,这时调用端需要一种手段来区分这些响应消息分别对应的是之前的哪条请求消息,所以我们说 RPC 在发送消息时要请求跟响应关联。

解决这个问题不难,只要调用端在收到响应消息之后,从响应消息中读取到一个标识,告诉调用端,这是哪条请求消息的响应消息就可以了。在这一讲中,你会发现我们设计的私有协议都会有消息 ID,这个消息 ID 的作用就是起到请求跟响应关联的作用。调用端为每一个消息生成一个唯一的消息 ID,它收到服务端发送回来的响应消息如果是同一消息 ID,那么调用端就可以认为,这条响应消息是之前那条请求消息的响应消息。

第五讲思考题:如果没有动态代理帮我们完成方法调用拦截,用户该怎么完成 RPC 调用?

这个问题我们可以参考下 gRPC 框架。gRPC 框架中就没有使用动态代理,它是通过代码生成的方式生成 Service 存根,当然这个 Service 存根起到的作用和 RPC 框架中的动态代理是一样的。

gRPC 框架用代码生成的 Service 存根来代替动态代理主要是为了实现多语言的客户端,因为有些语言是不支持动态代理的,比如 C++、go 等,但缺点也是显而易见的。如果你使用过 gRPC,你会发现这种代码生成 Service 存根的方式与动态代理相比还是很麻烦的,并不如动态代理的方式使用起来方便、透明。

第六讲思考题:在 gRPC 调用的时候,我们有一个关键步骤就是把对象转成可传输的二进制,但是在 gRPC 里面,我们并没有直接转成二进制数组,而是返回一个 InputStream,你知道这样做的好处是什么吗?

RPC 调用在底层传输过程中也是需要使用 Stream 的,直接返回一个 InputStream 而不是二进制数组,可以避免数据的拷贝。

第八讲思考题:目前服务提供者上线后会自动注册到注册中心,服务调用方会自动感知到新增的实例,并且流量会很快打到该新增的实例。如果我想把某些服务提供者实例的流量切走,除了下线实例,你有没有想到其它更便捷的办法呢?

解决这个问题的方法还是有很多的,比如留言中提到的改变服务提供者实例的权重,将权重调整为 0,或者通过路由的方式也可以。

但解决这个问题最便捷的方式还是使用动态分组,在[第 16 讲] 中我讲解了业务分组的概念,通过业务分组来实现流量隔离。如果业务分组是动态的,我们就可以在管理平台动态地自由调整,那是不是就可以实现动态地流量切换了呢?这个问题我们还会在高级篇中详解,期待一下。

第十二讲思考题:在整个 RPC 调用的流程中,异常重试发生在哪个环节?

在回答这个问题之前,我们先回想下这一讲中讲过的内容。我在讲 RPC 为什么需要异常重试时我说过,如果在发出请求时恰好网络出现问题了,导致我们的请求失败,我们可能需要进行异常重试。从这一点我们可以看出,异常重试的操作是要在调用端进行的。因为如果在调用端发出请求时恰好网络出现问题导致请求失败,那么这个请求很可能还没到达服务端,服务端当然就没办法去处理重试了。

另外,我还讲过,我们需要在所有发起重试、负载均衡选择节点的时候,去掉重试之前出现过问题的那个节点,以保证重试的成功率。由此可见异常重试的操作应该发生在负载均衡之前,在发起重试的时候,会调用负载均衡插件来选择一个服务节点,在调用负载均衡插件时我们要告诉负载均衡需要刨除哪些有问题的服务节点。

在整个 RPC 调用的过程中,从动态代理到负载均衡之间还有一系列的操作,如果你研究过开源的 RPC 框架,你会发现在调用端发送请求消息之前还会经过过滤链,对请求消息进行层层的过滤处理,之后才会通过负载均衡选择服务节点,发送请求消息,而异常重试操作就发生在过滤链处理之后,调用负载均衡选择服务节点之前,这样的重试是可以减少很多重复操作的。

第十四讲思考题:在启动预热那部分,我们特意提到过一个问题,就是“当大批量重启服务提供方的时候,会导致请求大概率发到没有重启的机器上,这时服务提供方有可能扛不住”,不知道你是怎么看待这个问题的,是否有好的解决方案呢?

我们可以考虑在非流量高峰的时候重启服务,将影响降到最低;也可以考虑分批次重启,控制好每批重启的服务节点的数量,当一批服务节点的权重与访问量都到正常水平时,再去重启下一批服务节点。

第十五讲思考题:在使用 RPC 的过程中业务要实现自我保护,针对这个问题你是否还有其他的解决方案?

通过这一讲我们知道,在 RPC 调用中无论服务端还是调用端都需要自我保护,服务端自我保护的最简单有效的方式是“限流”,调用端则可以通过“熔断”机制来进行自我保护。

除了“熔断”和“限流”外,相信你一定听过“降级”这个词。简单来说就是当一个服务处理大量的请求达到一定压力的时候,我们可以让这个服务在处理请求时减少些非必要的功能,从而降低这个服务的压力。

还有就是我们可以通过服务治理,降低一个服务节点的权重来减轻某一方服务节点的请求压力,达到保护这个服务节点的目的。

十六讲思考题:在我们的实际工作中,测试人员和开发人员的工作一般都是并行的,这就导致一个问题经常出现:开发人员在开发过程中可能需要启动自身的应用,而测试人员为了能验证功能,会在测试环境中部署同样的应用。如果开发人员和测试人员用的接口分组名刚好一样,在这种情况下,就可能会干扰其它正在联调的调用方进行功能验证,进而影响整体的工作效率。不知道面对这种情况,你有什么好办法吗?

我们可以考虑配置不同的注册中心,开发人员将自己的服务注册到注册中心 A 上,而测试人员可以将自己的服务注册到测试专属的注册中心 B 上,这样测试人员在验证功能的时候,调用端会从注册中心 B 上拉取服务节点,开发人员重启自己的服务是影响不到测试人员的。
如果你使用过或者了解 k8s 的话,你一定知道“命名空间”的概念,RPC 框架如果支持“命名空间”,也是可以解决这一问题的。

17丨异步RPC:压榨单机吞吐量

1)如何提升单机吞吐量

在我运营 RPC 的过程中,“如何提升吞吐量”是我与业务团队经常讨论的问题。

记得之前业务团队反馈过这样一个问题:我们的 TPS 始终上不去,压测的时候 CPU 压到40%~50% 就再也压不上去了,TPS 也不会提高,问我们这里有没有什么解决方案可以提升业务的吞吐量?

之后我是看了下他们服务的业务逻辑,发现他们的业务逻辑在执行较为耗时的业务逻辑的基础上,又同步调用了好几个其它的服务。由于这几个服务的耗时较长,才导致这个服务的业务逻辑耗时也长,CPU 大部分的时间都在等待,并没有得到充分地利用,因此 CPU 的利用率和服务的吞吐量当然上不去了。

2)那是什么影响到了 RPC 调用的吞吐量呢?

在使用 RPC 的过程中,谈到性能和吞吐量,我们的第一反应就是选择一款高性能、高吞吐量的 RPC 框架,那影响到 RPC 调用的吞吐量的根本原因是什么呢?

其实根本原因就是由于处理 RPC 请求比较耗时,并且 CPU 大部分的时间都在等待而没有去计算,从而导致 CPU 的利用率不够。这就好比一个人在干活,但他没有规划好时间,并且有很长一段时间都在闲着,当然也就完不成太多工作了。

那么导致 RPC 请求比较耗时的原因主要是在于 RPC 框架本身吗?事实上除非在网络比较慢或者使用方使用不当的情况下,否则,在大多数情况下,刨除业务逻辑处理的耗时时间,RPC 本身处理请求的效率就算在比较差的情况下也不过是毫秒级的。可以说 RPC 请求的耗时大部分都是业务耗时,比如业务逻辑中有访问数据库执行慢 SQL 的操作。所以说,在大多数情况下,影响到 RPC 调用的吞吐量的原因也就是业务逻辑处理慢了,CPU 大部分时间都在等待资源。

弄明白了原因,咱们就可以解决问题了,该如何去提升单机吞吐量?

这并不是一个新话题,比如现在我们经常提到的响应式开发,就是为了能够提升业务处理的吞吐量。要提升吞吐量,其实关键就两个字:“异步”。我们的 RPC 框架要做到完全异步化,实现全异步 RPC。试想一下,如果我们每次发送一个异步请求,发送请求过后请求即刻就结束了,之后业务逻辑全部异步执行,结果异步通知,这样可以增加多么可观的吞吐量?

3)调用端如何异步?

说到异步,我们最常用的方式就是返回 Future 对象的 Future 方式,或者入参为 Callback对象的回调方式,而 Future 方式可以说是最简单的一种异步方式了。我们发起一次异步请求并且从请求上下文中拿到一个 Future,之后我们就可以调用 Future 的 get 方法获取结果。

就比如刚才我提到的业务团队的那个问题,他们的业务逻辑中调用了好几个其它的服务,这时如果是同步调用,假设调用了 4 个服务,每个服务耗时 10 毫秒,那么业务逻辑执行完至少要耗时 40 毫秒。

那如果采用 Future 方式呢?

连续发送 4 次异步请求并且拿到 4 个 Future,由于是异步调用,这段时间的耗时几乎可以忽略不计,之后我们统一调用这几个 Future 的 get 方法。这样一来的话,业务逻辑执行完的时间在理想的情况下是多少毫秒呢?没错,10 毫秒,耗时整整缩短到了原来的四分之一,也就是说,我们的吞吐量有可能提升 4 倍!

 

那 RPC 框架的 Future 方式异步又该如何实现呢?

通过基础篇的学习,我们了解到,一次 RPC 调用的本质就是调用端向服务端发送一条请求消息,服务端收到消息后进行处理,处理之后响应给调用端一条响应消息,调用端收到响应消息之后再进行处理,最后将最终的返回值返回给动态代理。

这里我们可以看到,对于调用端来说,向服务端发送请求消息与接收服务端发送过来的响应消息,这两个处理过程是两个完全独立的过程,这两个过程甚至在大多数情况下都不在一个线程中进行。那么是不是说 RPC 框架的调用端,对于 RPC 调用的处理逻辑,内部实现就是异步的呢?

不错,对于 RPC 框架,无论是同步调用还是异步调用,调用端的内部实现都是异步的。

通过[第 02 讲] 我们知道,调用端发送的每条消息都一个唯一的消息标识,实际上调用端向服务端发送请求消息之前会先创建一个 Future,并会存储这个消息标识与这个 Future的映射,动态代理所获得的返回值最终就是从这个 Future 中获取的;当收到服务端响应的消息时,调用端会根据响应消息的唯一标识,通过之前存储的映射找到对应的 Future,将结果注入给那个 Future,再进行一系列的处理逻辑,最后动态代理从 Future 中获得到正确的返回值。
 
所谓的同步调用,不过是 RPC 框架在调用端的处理逻辑中主动执行了这个 Future 的 get方法,让动态代理等待返回值;而异步调用则是 RPC 框架没有主动执行这个 Future 的get 方法,用户可以从请求上下文中得到这个 Future,自己决定什么时候执行这个 Future的 get 方法。

 

现在你应该很清楚 RPC 框架是如何实现 Future 方式的异步了。

4) 如何做到 RPC 调用全异步?
刚才我讲解了 Future 方式的异步,Future 方式异步可以说是调用端异步的一种方式,那么服务端呢?服务端是否需要异步,有什么实现方式?
通过基础篇的学习,我们了解到 RPC 服务端接收到请求的二进制消息之后会根据协议进行拆包解包,之后将完整的消息进行解码并反序列化,获得到入参参数之后再通过反射执行业务逻辑。那你有没有想过,在生产环境中这些操作都在哪个线程中执行呢?是在一个线程中执行吗?

当然不会在一个,对二进制消息数据包拆解包的处理是一定要在处理网络 IO 的线程中,如果网络通信框架使用的是 Netty 框架,那么对二进制包的处理是在 IO 线程中,而解码与反序列化的过程也往往在 IO 线程中处理,那服务端的业务逻辑呢?也应该在 IO 线程中处理吗?原则上是不应该的,业务逻辑应该交给专门的业务线程池处理,以防止由于业务逻辑处理得过慢而影响到网络 IO 的处理。

这时问题就来了,我们配置的业务线程池的线程数都是有限制的,在我运营 RPC 的经验中,业务线程池的线程数一般只会配置到 200,因为在大多数情况下线程数配置到 200 还不够用就说明业务逻辑该优化了。那么如果碰到特殊的业务场景呢?让配置的业务线程池完全打满了,比如这样一个场景。

我这里启动一个服务,业务逻辑处理得就是比较慢,当访问量逐渐变大时,业务线程池很容易就被打满了,吞吐量很不理想,并且这时 CPU 的利用率也很低。

对于这个问题,你有没有想到什么解决办法呢?是不是会马上想到调大业务线程池的线程数?那这样可以吗?有没有更好的解决方式呢?

我想服务端业务处理逻辑异步是个好方法。

调大业务线程池的线程数,的确勉强可以解决这个问题,但是对于 RPC 框架来说,往往都会有多个服务共用一个线程池的情况,即使调大业务线程池,比较耗时的服务很可能还会影响到其它的服务。所以最佳的解决办法是能够让业务线程池尽快地释放,那么我们就需要RPC 框架能够支持服务端业务逻辑异步处理,这对提高服务的吞吐量有很重要的意义。

那服务端如何支持业务逻辑异步呢?

这是个比较难处理的问题,因为服务端执行完业务逻辑之后,要对返回值进行序列化并且编码,将消息响应给调用端,但如果是异步处理,业务逻辑触发异步之后方法就执行完了,来不及将真正的结果进行序列化并编码之后响应给调用端。

这时我们就需要 RPC 框架提供一种回调方式,让业务逻辑可以异步处理,处理完之后调用RPC 框架的回调接口,将最终的结果通过回调的方式响应给调用端。

说到服务端支持业务逻辑异步处理,结合我刚才讲解的 Future 方式异步,你有没有想到更好的处理方式呢?其实我们可以让 RPC 框架支持 CompletableFuture,实现 RPC 调用在调用端与服务端之间完全异步。

CompletableFuture 是 Java8 原生支持的。试想一下,假如 RPC 框架能够支持CompletableFuture,我现在发布一个 RPC 服务,服务接口定义的返回值是CompletableFuture 对象,整个调用过程会分为这样几步:

服务调用方发起 RPC 调用,直接拿到返回值 CompletableFuture 对象,之后就不需要任何额外的与 RPC 框架相关的操作了(如我刚才讲解 Future 方式时需要通过请求上下文获取 Future 的操作),直接就可以进行异步处理;

在服务端的业务逻辑中创建一个返回值 CompletableFuture 对象,之后服务端真正的业务逻辑完全可以在一个线程池中异步处理,业务逻辑完成之后再调用这个CompletableFuture 对象的 complete 方法,完成异步通知;

调用端在收到服务端发送过来的响应之后,RPC 框架再自动地调用调用端拿到的那个返回值 CompletableFuture 对象的 complete 方法,这样一次异步调用就完成了。

通过对 CompletableFuture 的支持,RPC 框架可以真正地做到在调用端与服务端之间完全异步,同时提升了调用端与服务端的两端的单机吞吐量,并且 CompletableFuture 是Java8 原生支持,业务逻辑中没有任何代码入侵性,这是不是很酷炫了?

5)总结

其实,RPC 框架也可以有其它的异步策略,比如集成 RxJava,再比如 gRPC 的StreamObserver 入参对象,但 CompletableFuture 是 Java8 原生提供的,无代码入侵性,并且在使用上更加方便。如果是 Java 开发,让 RPC 框架支持 CompletableFuture 可以说是最佳的异步解决方案。

18丨安全体系:如何建立可靠的安全体系?

19丨分布式环境下如何快速定位问题?

20丨详解时钟轮在RPC中的应用

21丨流量回放:保障业务技术升级的神器

1)流量回访可以做什么

我们可以换一种思路,我可以先把线上一段时间内的请求参数和响应结果保存下来,然后把这些请求参数在新改造的应用里重新请求一遍,最后比对一下改造前后的响应结果是否一致,这就间接达到了使用线上流量测试的效果。有了线上的请求参数和响应结果后,我们再结合持续集成过程,就可以让我们改动后的代码随时用线上流量进行验证,这就跟我录制球赛视频一样,只要我想看,我随时都可以拿出来重新看一遍。

2)RPC 怎么支持流量回放?

那在实际工作中,我们该怎么实现流量回放呢?

我们常见的方案有很多,比如像 TcpCopy、Nginx 等。但在线上环境要使用这些工具的时候,我们还得需要找运维团队帮我们把应用安装到应用实例里面,然后再按照你的需求给配置好才能使用,整个过程繁琐而且总数重复做无用功,那有没有更好的办法呢?尤其是在应用使用了 RPC 的情况下。

在前面我们不止一次说过,RPC 是用来完成应用之间通信的,换句话就是说应用之间的所有请求响应都会经过 RPC。

既然所有的请求都会经过 RPC,那么我们在 RPC 里面是不是就可以很方便地拿到每次请求的出入参数?拿到这些出入参数后,我们只要把这些出入参数旁录下来,并把这些旁录结果用异步的方式发送到一个固定的地方保存起来,这样就完成了流量回放里面的录制功能。

相对其它现成的流量回放方案,我们在 RPC 里面内置流量回放功能,使用起来会更加方便,并且我们还可以做更多定制,比如在线启停、方法级别录制等个性化需求。

22丨动态分组:超高效实现秒级扩缩容

23丨如何在没有接口的情况下进行RPC调用?

24丨如何在线上环境里兼容多种RPC协议?

特别放送丨谈谈我所经历过的RPC

结束语丨学会从优秀项目的源代码中挖掘知识

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM