波士顿房价数据集
- 卡内基梅隆大学,StatLib库,1978年
- 涵盖了麻省波士顿的506个不同郊区的房屋数据
- 404条训练数据集,102条测试数据集
- 每条数据14个字段,包含13个属性,和1个房价的平均值
目标
将所有属性与房价之间的关系可视化
代码
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
boston_housing = tf.keras.datasets.boston_housing
#数据集不需要测试,将所有的数据都加载到训练数据集用于显示,test_split为划分测试机的比例
(train_x,train_y),(test_x,test_y) = boston_housing.load_data(test_split = 0)
title_list = ['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE',
'DIS','RAD','TAX','PTRATIO','B-1000','LSTAT','MEDV']
plt.figure(figsize=(8,8))
for i in range(13):
plt.subplot(4,4,i+1)
plt.scatter(train_x[:,i],train_y,s=5)
plt.xlabel(title_list[i])
plt.ylabel('Price')
plt.title(str(i+1)+'. '+title_list[i]+' - Price')
plt.tight_layout(rect=[0,0,1,0.95])
plt.suptitle('各属性与房价之间的关系')
plt.show()