Seata——AT模式原理


在之前的项目中我使用了Seata分布式事务来保证订单服务的最终一致性,下面就来看一下Seata的AT模式的原理。

AT模式的整体机制是由两阶段协议演变而来的。先来看看什么是两阶段协议

两阶段协议

两阶段提交协议是协调所有分布式原子事务参与者,并决定提交或取消(回滚)的分布式算法。

(1)协议参与者

在两阶段协议中,系统一般包含两类机器或节点:一类为协调者(coordinator),类似于系统的控制中心,通常一个系统中只有一个;另一类为事务参与者(participants,cohorts或workers),一般包含多个,在数据存储系统中可以理解为数据副本的个数。协议中假设每个节点都会记录写前日志(write-ahead log)并持久性存储,即使节点发生故障日志也不会丢失。协议中同时假设节点不会发生永久性故障而且任意两个节点都可以互相通信。

 

(2)两阶段的执行

1.请求阶段(commit-request phase,或称表决阶段,voting phase)

在请求阶段,协调者将通知事务参与者准备提交或取消事务,然后进入表决过程。
在表决过程中,参与者将告知协调者自己的决策:同意(事务参与者本地作业执行成功)或取消(本地作业执行故障)。

2.提交阶段(commit phase)

在该阶段,协调者将基于第一个阶段的投票结果进行决策:提交或取消。
当且仅当所有的参与者同意提交事务协调者才通知所有的参与者提交事务,否则协调者将通知所有的参与者取消事务。
参与者在接收到协调者发来的消息后将执行响应的操作。

(3)两阶段提交的缺点

1.同步阻塞问题

执行过程中,所有参与节点都是事务阻塞型的。当参与者占有公共资源时,其他第三方节点访问公共资源不得不处于阻塞状态。

2.单点故障

由于协调者的重要性,一旦协调者发生故障,参与者会一直阻塞下去。尤其在第二阶段,协调者发生故障,那么所有的参与者还都处于锁定事务资源的状态中,而无法继续完成事务操作。(如果是协调者挂掉,可以重新选举一个协调者,但是无法解决因为协调者宕机导致的参与者处于阻塞状态的问题)

3.数据不一致

在二阶段提交的阶段二中,当协调者向参与者发送commit请求之后,发生了局部网络异常或者在发送commit请求过程中协调者发生了故障,这回导致只有一部分参与者接受到了commit请求。
而在这部分参与者接到commit请求之后就会执行commit操作。但是其他部分未接到commit请求的机器则无法执行事务提交。于是整个分布式系统便出现了数据部一致性的现象。

(4)两阶段提交无法解决的问题

当协调者出错,同时参与者也出错时,两阶段无法保证事务执行的完整性。
考虑协调者再发出commit消息之后宕机,而唯一接收到这条消息的参与者同时也宕机了,那么即使协调者通过选举协议产生了新的协调者,这条事务的状态也是不确定的,没人知道事务是否被已经提交。

接下来看一下Seata的AT模式的实现

Seata——AT模式

术语

TC (Transaction Coordinator) - 事务协调者

维护全局和分支事务的状态,驱动全局事务提交或回滚。

TM (Transaction Manager) - 事务管理器

定义全局事务的范围:开始全局事务、提交或回滚全局事务。

RM (Resource Manager) - 资源管理器

管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。

 整体机制

两阶段提交协议的演变:

一阶段:业务数据和回滚日志记录在同一个本地事务中提交,释放本地锁和连接资源。

二阶段:

  • 提交异步化,非常快速地完成。
  • 回滚通过一阶段的回滚日志进行反向补偿。

 第一阶段,就是各个阶段本地提交操作;第二阶段会根据第一阶段的情况决定是进行全局提交还是全局回滚操作。

写隔离

  • 一阶段本地事务提交前,需要确保先拿到 全局锁 
  • 拿不到 全局锁 ,不能提交本地事务。
  • 拿 全局锁 的尝试被限制在一定范围内,超出范围将放弃,并回滚本地事务,释放本地锁。

以一个例子来说明:

两个全局事务 tx1 和 tx2,分别对 a 表的 m 字段进行更新操作,m 的初始值 1000。

tx1 先开始,开启本地事务,拿到本地锁,更新操作 m = 1000 - 100 = 900。本地事务提交前,先拿到该记录的 全局锁 ,本地提交释放本地锁。 tx2 后开始,开启本地事务,拿到本地锁,更新操作 m = 900 - 100 = 800。本地事务提交前,尝试拿该记录的 全局锁 ,tx1 全局提交前,该记录的全局锁被 tx1 持有,tx2 需要重试等待 全局锁 。

 

 

tx1 二阶段全局提交,释放 全局锁 。tx2 拿到 全局锁 提交本地事务。

 

 

 

如果 tx1 的二阶段全局回滚,则 tx1 需要重新获取该数据的本地锁,进行反向补偿的更新操作,实现分支的回滚。

此时,如果 tx2 仍在等待该数据的 全局锁,同时持有本地锁,则 tx1 的分支回滚会失败。分支的回滚会一直重试,直到 tx2 的 全局锁 等锁超时,放弃 全局锁 并回滚本地事务释放本地锁,tx1 的分支回滚最终成功。

因为整个过程 全局锁 在 tx1 结束前一直是被 tx1 持有的,所以不会发生 脏写 的问题。

读隔离

在数据库本地事务隔离级别 读已提交(Read Committed) 或以上的基础上,Seata(AT 模式)的默认全局隔离级别是 读未提交(Read Uncommitted) 。

这里补充一下事务的四个隔离级别:

  • READ-UNCOMMITTED(读未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
  • READ-COMMITTED(读已提交): 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。
  • REPEATABLE-READ(可重复读): 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。
  • SERIALIZABLE(可串行化): 最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。

如果应用在特定场景下,必需要求全局的 读已提交 ,目前 Seata 的方式是通过 SELECT FOR UPDATE 语句的代理。

 

 

 

 

SELECT FOR UPDATE 语句的执行会申请 全局锁 ,如果 全局锁 被其他事务持有,则释放本地锁(回滚 SELECT FOR UPDATE 语句的本地执行)并重试。这个过程中,查询是被 block 住的,直到 全局锁 拿到,即读取的相关数据是 已提交 的,才返回。

出于总体性能上的考虑,Seata 目前的方案并没有对所有 SELECT 语句都进行代理,仅针对 FOR UPDATE 的 SELECT 语句。

InnoDB行锁是通过给索引上的索引项加锁来实现的,只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁

工作机制

以一个示例来说明整个 AT 分支的工作过程。

业务表:product

 

 AT 分支事务的业务逻辑:

update product set name = 'GTS' where name = 'TXC';

  

一阶段

过程:

  1. 解析 SQL:得到 SQL 的类型(UPDATE),表(product),条件(where name = 'TXC')等相关的信息。
  2. 查询前镜像:根据解析得到的条件信息,生成查询语句,定位数据。
select id, name, since from product where name = 'TXC';

  得到前镜像:

id name since
1 TXC 2014

 

  1. 执行业务 SQL:更新这条记录的 name 为 'GTS'。
  2. 查询后镜像:根据前镜像的结果,通过 主键 定位数据。
select id, name, since from product where id = 1;

  得到后镜像:

id name since
1 GTS 2014
  1. 插入回滚日志:把前后镜像数据以及业务 SQL 相关的信息组成一条回滚日志记录,插入到 UNDO_LOG 表中。
{
	"branchId": 641789253,
	"undoItems": [{
		"afterImage": {
			"rows": [{
				"fields": [{
					"name": "id",
					"type": 4,
					"value": 1
				}, {
					"name": "name",
					"type": 12,
					"value": "GTS"
				}, {
					"name": "since",
					"type": 12,
					"value": "2014"
				}]
			}],
			"tableName": "product"
		},
		"beforeImage": {
			"rows": [{
				"fields": [{
					"name": "id",
					"type": 4,
					"value": 1
				}, {
					"name": "name",
					"type": 12,
					"value": "TXC"
				}, {
					"name": "since",
					"type": 12,
					"value": "2014"
				}]
			}],
			"tableName": "product"
		},
		"sqlType": "UPDATE"
	}],
	"xid": "xid:xxx"
}
  1. 提交前,向 TC 注册分支:申请 product 表中,主键值等于 1 的记录的 全局锁 。
  2. 本地事务提交:业务数据的更新和前面步骤中生成的 UNDO LOG 一并提交。
  3. 将本地事务提交的结果上报给 TC。

二阶段-回滚

二阶段如果是回滚的话,Seata 就需要回滚一阶段已经执行的“业务 SQL”,还原业务数据。回滚方式使用“before image”还原业务数据;但在还原前要首先要校验脏写,对比“数据库当前业务数据”和 “after image”,如果两份数据完全一致就说明没有脏写,可以还原业务数据,如果不一致就说明有脏写,出现脏写就需要转人工处理。
执行步骤:
  1. 收到 TC 的分支回滚请求,开启一个本地事务,执行如下操作。
  2. 通过 XID 和 Branch ID 查找到相应的 UNDO LOG 记录。
  3. 数据校验:拿 UNDO LOG 中的后镜与当前数据进行比较,如果有不同,说明数据被当前全局事务之外的动作做了修改。这种情况,需要根据配置策略来做处理、。
  4. 根据 UNDO LOG 中的前镜像和业务 SQL 的相关信息生成并执行回滚的语句:
update product set name = 'TXC' where id = 1;
  1. 提交本地事务。并把本地事务的执行结果(即分支事务回滚的结果)上报给 TC。

 

 

二阶段-提交

如果所有Branch RM都执行成功了,那么二阶段就进行全局Commit。因为“业务 SQL”在一阶段已经提交至数据库,每个Branch本地数据库操作已经完成了, 所以只需将一阶段保存的快照数据和行锁删掉,也就是把本地的Undolog删了完成数据清理即可。

执行步骤:

  1. 收到 TC 的分支提交请求,把请求放入一个异步任务的队列中,马上返回提交成功的结果给 TC。
  2. 异步任务阶段的分支提交请求将异步和批量地删除相应 UNDO LOG 记录。

 

 

 

参考链接 https://www.cnblogs.com/balfish/p/8658691.html 

http://seata.io/zh-cn/docs/overview/what-is-seata.html

https://www.jianshu.com/p/ea454a710908


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM