python 使用tesseract进行图片识别


from PIL import Image
import pytesseract

text = pytesseract.image_to_string(Image.open(r'E:\guo\2432.jpg'),lang='chi_sim')
print(text)

1.需要安装二个模块,

  pip install Pillow  即可安装PIL

  pip install pytesseract

2安装好了模块还需要下载 tesseract-ocr

  下载网址:https://github.com/UB-Mannheim/tesseract/wiki

  选择自己的版本下载,下载之后直接安装即可。注意要记住安装的位置,等下需要用到

  修改pytesseract.py 文件里面的指向路径

  打开方式可以在pycharm 输入import pytesseract.pytesseract 然后按住ctrl键鼠标对着pytesseract右键点击进去

1 from io import BytesIO
2 pandas_installed = find_loader('pandas') is not None
3 if pandas_installed:
4     import pandas as pd
5 
6 # CHANGE THIS IF TESSERACT IS NOT IN YOUR PATH, OR IS NAMED DIFFERENTLY
7 tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
8 RGB_MODE = 'RGB'

其中tesseract_cmd是我已经修改了的地址,tesseract.exe在刚刚安装位置里面,将这里设置好了运行就不会报错

pytesseract有很多语言库,默认的有英文,如果需要中文要去下载对应的语言包:
网址:https://github.com/tesseract-ocr/tessdata
其中的chi_sim.traineddata为简体中文的语言包,将语言包放置到安装路径的tessdata目录下即可。
如果需要使用语言包使用lang=来指定对应的语言包。默认是英文的。

chi_sim.traineddata的识别率不高,如果需要针对性的文字可以使用训练模型生成适合自己的语言包


关于pytesseract

pytesseract最新版本0.1.6,网址:https://pypi.python.org/pypi/pytesseract

a、Python-tesseract是一个基于google's Tesseract-OCR的独立封装包;

b、Python-tesseract功能是识别图片文件中文字,并作为返回参数返回识别结果;

c、Python-tesseract默认支持tiff、bmp格式图片,只有在安装PIL之后,才能支持jpeg、gif、png等其他图片格式;

 注意:tesserocr与pytesseract是Python的一个OCR识别库,但其实是对tesseract做的一层Python API封装,pytesseract是Google的Tesseract-OCR引擎包装器;所以它们的核心是tesseract,因此在安装tesserocr之前,我们需要先安装tesseract

pytesseract安装 && tesseract安装

下载tesseract:https://digi.bib.uni-mannheim.de/tesseract/tesseract-ocr-w64-setup-v4.0.0-beta.1.20180414.exe

然后双击程序安装即可,可以勾选Additional language data(download)选项来安装OCR识别支持的语言包,但下载语言包实在是慢,我们可以直接从https://github.com/tesseract-ocr/tessdata下载zip的语言包压缩文件,解压后将tessdata-master中的文件复制到Tesseract的安装目录C:\Program Files (x86)\Tesseract-OCR\tessdata目录下,最后我们配置下环境变量,我们将C:\Program Files (x86)\Tesseract-OCR添加到环境变量中

 

在测试之前先了解下tesseract的命令程序格式:

 tesseract imagename outputbase [-l lang]

 imagename指定图片名称,outputbase指定输出文件名,-l指定识别的语言

#显示安装的语言包
tesseract --list-langs

#显示帮助
tesseract --help
tesseract --help-extra
tesseract --version
#使用一张图片测试,成功识别字符串
tesseract image.png result -l eng |type result.txt

由于tesserocr在windows环境下会出现各种不兼容问题,并且与pycharm虚拟环境不兼容等问题,所以在windows系统环境下,选择pytesseract模块进行安装,如果实在要安装请使用whl文件安装或者使用conda安装

pip install pytesseract

如果在pytesseract运行是找不到tesseract解释器,这种情况一般是在虚拟环境下会发生,我们需要将tesseract-OCR的执行文件tesseract.ext配置到windows系统中的PATH环境中,或者修改pytesseract.py文件,将其中的“tesseract_cmd”字段指定为tesseract.exe的完整路径即可

测试识别功能:

import pytesseract
from PIL import Image

im=Image.open('image.png')
print(pytesseract.image_to_string(im))

tesserocr与pytesseract模块的使用

(1)tesserocr的使用

#从文件识别图像字符
In [7]: tesserocr.file_to_text('image.png')
Out[7]: 'Python3WebSpider\n\n'

#查看tesseract已安装的语言包
In [8]: tesserocr.get_languages()
Out[8]: ('/usr/share/tesseract/tessdata/', ['eng'])

#从图片数据识别图像字符
In [9]: tesserocr.image_to_text(im)
Out[9]: 'Python3WebSpider\n\n'

#查看版本信息
In [10]: tesserocr.tesseract_version()
Out[10]: 'tesseract 3.04.00\n leptonica-1.72\n  libgif 4.1.6(?) : libjpeg 6b (libjpeg-turbo 1.2.90) : libpng 1.5.13 : libtiff 4.0.3 : zlib 1.2.7 : libwebp 0.3.0\n'

(2)pytesseract使用

功能:

  • get_tesseract_version  返回系统中安装的Tesseract版本。
  • image_to_string  将图像上的Tesseract OCR运行结果返回到字符串
  • image_to_boxes  返回包含已识别字符及其框边界的结果
  • image_to_data  返回包含框边界,置信度和其他信息的结果。需要Tesseract 3.05+。有关更多信息,请查看Tesseract TSV文档
  • image_to_osd  返回包含有关方向和脚本检测的信息的结果。

参数:

image_to_data(image, lang=None, config='', nice=0, output_type=Output.STRING)
  • image object  图像对象
  • lang String,Tesseract  语言代码字符串
  • config String  任何其他配置为字符串,例如:config='--psm 6'
  • nice Integer  修改Tesseract运行的处理器优先级。Windows不支持。尼斯调整了类似unix的流程的优点。
  • output_type  类属性,指定输出的类型,默认为string。有关所有支持类型的完整列表,请检查pytesseract.Output类的定义。
from PIL import Image
import pytesseract

#如果PATH中没有tesseract可执行文件,请指定tesseract路径
pytesseract.pytesseract.tesseract_cmd='C:\Program Files (x86)\Tesseract-OCR\\tesseract.exe'

#打印识别的图像的字符串
print(pytesseract.image_to_string(Image.open('test.png')))

#指定语言识别图像字符串,eng为英语
print(pytesseract.image_to_string(Image.open('test-european.jpg'), lang='eng'))

#获取图像边界框
print(pytesseract.image_to_boxes(Image.open('test.png')))

#获取包含边界框,置信度,行和页码的详细数据
print(pytesseract.image_to_data(Image.open('test.png')))

#获取方向和脚本检测
print(pytesseract.image_to_osd(Image.open('test.png'))

 

图像识别简单应用

 一般图像处理验证,需要通过对图像进行灰度处理、二值化后增加图像文字的辨识度,下面是一个简单的对图像验证码识别处理,如遇到复杂点的图像验证码如中间带多条同等大小划线的验证码需要对文字进行乔正切割等操作,但它的识别度也只有百分之30左右,所以得另外想别的办法来绕过验证

from PIL import Image
import pytesseract

im = Image.open('66.png')
#二值化图像传入图像和阈值
def erzhihua(image,threshold):
    ''':type image:Image.Image'''
    image=image.convert('L')
    table=[]
    for i in range(256):
        if i <  threshold:
            table.append(0)
        else:
            table.append(1)
    return image.point(table,'1')


image=erzhihua(im,127)
image.show()

result=pytesseract.image_to_string(image,lang='eng')
print(result)
View Code

模拟自动识别验证码登陆:

from selenium import webdriver
from selenium.common.exceptions import TimeoutException,WebDriverException
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.remote.webelement import WebElement
from io import BytesIO
from PIL import Image
import pytesseract
import time

user='zhang'
password='123'
url='http://10.0.0.200'
driver=webdriver.Chrome()
wait=WebDriverWait(driver,10)

#识别验证码
def acker(content):
    im_erzhihua=erzhihua(content,127)
    result=pytesseract.image_to_string(im_erzhihua,lang='eng')
    return result

#验证码二值化
def erzhihua(image,threshold):
    ''':type image:Image.Image'''
    image=image.convert('L')
    table=[]
    for i in range(256):
        if i <  threshold:
            table.append(0)
        else:
            table.append(1)
    return image.point(table,'1')

#自动登陆
def login():
    try:
        driver.get(url)
        #获取用户输入框
        input=wait.until(EC.presence_of_element_located((By.CSS_SELECTOR,'#loginname'))) #type:WebElement
        input.clear()
        #发送用户名
        input.send_keys(user)
        #获取密码框
        inpass=wait.until(EC.presence_of_element_located((By.CSS_SELECTOR,'#password'))) #type:WebElement
        inpass.clear()
        #发送密码
        inpass.send_keys(password)
        #获取验证输入框
        yanzheng=wait.until(EC.presence_of_element_located((By.CSS_SELECTOR,'#code'))) #type:WebElement
        #获取验证码在画布中的位置
        codeimg=wait.until(EC.presence_of_element_located((By.CSS_SELECTOR,'#codeImg'))) #type:WebElement
        image_location = codeimg.location
        #截取页面图像并截取掩码码区域图像
        image=driver.get_screenshot_as_png()
        im=Image.open(BytesIO(image))
        imag_code=im.crop((image_location['x'],image_location['y'],488,473))
        #输入验证码并登陆
        yanzheng.clear()
        yanzheng.send_keys(acker(imag_code))
        time.sleep(2)
        yanzheng.send_keys(Keys.ENTER)
    except TimeoutException as e:
        print('timeout:',e)
    except WebDriverException as e:
        print('webdriver error:',e)

if __name__ == '__main__':
    login()
View Code

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM