spark scala 删除所有列全为空值的行


删除表中全部为NaN的行

df.na.drop("all")

删除表任一列中有NaN的行

df.na.drop("any")

示例:

scala> df.show
+----+-------+--------+-------------------+-----+----------+
|  id|zipcode|    type|               city|state|population|
+----+-------+--------+-------------------+-----+----------+
|   1|    704|STANDARD|               null|   PR|     30100|
|   2|    704|    null|PASEO COSTA DEL SUR|   PR|      null|
|   3|    709|    null|       BDA SAN LUIS|   PR|      3700|
|   4|  76166|  UNIQUE|  CINGULAR WIRELESS|   TX|     84000|
|   5|  76177|STANDARD|               null|   TX|      null|
|null|   null|    null|               null| null|      null|
|   7|  76179|STANDARD|               null|   TX|      null|
+----+-------+--------+-------------------+-----+----------+


scala> df.na.drop("all").show()
+---+-------+--------+-------------------+-----+----------+
| id|zipcode|    type|               city|state|population|
+---+-------+--------+-------------------+-----+----------+
|  1|    704|STANDARD|               null|   PR|     30100|
|  2|    704|    null|PASEO COSTA DEL SUR|   PR|      null|
|  3|    709|    null|       BDA SAN LUIS|   PR|      3700|
|  4|  76166|  UNIQUE|  CINGULAR WIRELESS|   TX|     84000|
|  5|  76177|STANDARD|               null|   TX|      null|
|  7|  76179|STANDARD|               null|   TX|      null|
+---+-------+--------+-------------------+-----+----------+


scala> df.na.drop().show()
+---+-------+------+-----------------+-----+----------+
| id|zipcode|  type|             city|state|population|
+---+-------+------+-----------------+-----+----------+
|  4|  76166|UNIQUE|CINGULAR WIRELESS|   TX|     84000|
+---+-------+------+-----------------+-----+----------+


scala> df.na.drop("any").show()
+---+-------+------+-----------------+-----+----------+
| id|zipcode|  type|             city|state|population|
+---+-------+------+-----------------+-----+----------+
|  4|  76166|UNIQUE|CINGULAR WIRELESS|   TX|     84000|
+---+-------+------+-----------------+-----+----------+

删除给定列为Null的行:

val nameArray = sparkEnv.sc.textFile("/master/abc.txt").collect()
val df = df.na.drop("all", nameArray.toList.toArray)

df.na.drop(Seq("population","type"))

删除指定列为Na的行(删除列create_time为Na的行)

.na.drop("all", Seq("create_time"))

函数原型:

def drop(): DataFrame
Returns a new DataFrame that drops rows containing any null or NaN values.

def drop(how: String): DataFrame
Returns a new DataFrame that drops rows containing null or NaN values.
If how is "any", then drop rows containing any null or NaN values. If how is "all", then drop rows only if every column is null or NaN for that row.

def drop(how: String, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new DataFrame that drops rows containing null or NaN values in the specified columns.
If how is "any", then drop rows containing any null or NaN values in the specified columns. If how is "all", then drop rows only if every specified column is null or NaN for that row.

def drop(how: String, cols: Array[String]): DataFrame
Returns a new DataFrame that drops rows containing null or NaN values in the specified columns.
If how is "any", then drop rows containing any null or NaN values in the specified columns. If how is "all", then drop rows only if every specified column is null or NaN for that row.

def drop(cols: Seq[String]): DataFrame
(Scala-specific) Returns a new DataFrame that drops rows containing any null or NaN values in the specified columns.

def drop(cols: Array[String]): DataFrame
Returns a new DataFrame that drops rows containing any null or NaN values in the specified columns.

更多函数原型:
https://spark.apache.org/docs/2.2.0/api/scala/index.html#org.apache.spark.sql.DataFrameNaFunctions


参考:
N多spark使用示例:https://sparkbyexamples.com/spark/spark-dataframe-drop-rows-with-null-values/
示例代码及数据集:https://github.com/spark-examples/spark-scala-examples csv路径:src/main/resources/small_zipcode.csv
https://www.jianshu.com/p/39852729736a


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM