在tensorflow里提供了计算L1、L2正则化的函数
1 tf.contrib.layers.l1_regularizer() 2 tf.contrib.layers.l2_regularizer()
设计一个简易的网络模型,实现了通过集合计算一个4层全连接神经网络带L2正则化损失函数的功能
import tensorflow as tf import numpy as np # 定义训练轮次 training_steps = 30000 # 定义输入的数据和对应的标签并在 for 循环里进行填充 data = [] label = [] for i in range(200): x1 = np.random.uniform(-1, 1) x2 = np.random.uniform(0, 2) # 这里对 x1,x2 进行判断,如果产生的点落在半径为1的圆内,则label为0,否则为1 if x1 ** 2 + x2 ** 2 <= 1: data.append([np.random.normal(x1, 0.1), np.random.normal(x2, 0.1)]) label.append(0) else: data.append([np.random.normal(x1, 0.1), np.random.normal(x2, 0.1)]) label.append(1) # numpy 的 hstack() 函数用于在水平方向将元素堆起来 data = np.hstack(data).reshape(-1, 2) label = np.hstack(label).reshape(-1, 1) # 定义完成前向传播的隐层 def hidden_layer(input_tensor, weight1, bias1, weight2, bias2, weight3, bias3): layer1 = tf.nn.relu(tf.matmul(input_tensor, weight1) + bias1) layer2 = tf.nn.relu(tf.matmul(layer1, weight2) + bias2) return tf.matmul(layer2, weight3) + bias3 xs = tf.placeholder(tf.float32, shape=(None, 2), name="x-input") ys = tf.placeholder(tf.float32, shape=(None, 1), name="y-output") # 定义权重参数和偏置参数 weight1 = tf.Variable(tf.truncated_normal([2, 10], stddev=0.1)) bias1 = tf.Variable(tf.constant(0.1, shape=[10])) weight2 = tf.Variable(tf.truncated_normal([10, 10], stddev=0.1)) bias2 = tf.Variable(tf.constant(0.1, shape=[10])) weight3 = tf.Variable(tf.truncated_normal([10, 1], stddev=0.1)) bias3 = tf.Variable(tf.constant(0.1, shape=[1])) # 计算 data 数组长度 sample_size = len(data) # 得到隐藏层前向传播结果 y = hidden_layer(xs, weight1, bias1, weight2, bias2, weight3, bias3) # 定义损失函数 error_loss = tf.reduce_sum(tf.pow(ys-y, 2)) tf.add_to_collection("losses", error_loss) # 参数L2正则化 regularizer = tf.contrib.layers.l2_regularizer(0.01) retularization = regularizer(weight1) + regularizer(weight2) + regularizer(weight3) tf.add_to_collection("losses", retularization) # get_collection函数获取指定集合中的所有个体,这里是获取所有损失值,并在 add_n() 函数中进行加和运算 loss = tf.add_n(tf.get_collection("losses")) # 定义一个优化器 train_op = tf.train.AdamOptimizer(0.05).minimize(loss) with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) for i in range(training_steps): sess.run(train_op, feed_dict={xs: data, ys: label}) # 每迭代 2000次 输出一个loss值 if i % 2000 == 0: loss_value = sess.run(loss, feed_dict={xs: data, ys: label}) print("After %d steps, mse_loss: %f" %(i, loss_value)) # 运行结果: After 0 steps, mse_loss: 51.364639 After 2000 steps, mse_loss: 7.050952 After 4000 steps, mse_loss: 4.775972 After 6000 steps, mse_loss: 4.787066 After 8000 steps, mse_loss: 4.931646 After 10000 steps, mse_loss: 4.702201 After 12000 steps, mse_loss: 4.578232 After 14000 steps, mse_loss: 4.605384 After 16000 steps, mse_loss: 5.032600 After 18000 steps, mse_loss: 4.586043 After 20000 steps, mse_loss: 4.606448 After 22000 steps, mse_loss: 4.518520 After 24000 steps, mse_loss: 4.620658 After 26000 steps, mse_loss: 4.713350 After 28000 steps, mse_loss: 4.740762