常见的限流算法大致有三种:
- 令牌桶算法
- 漏桶算法
- 计数器算法
网上对令牌桶又细分为固定窗口计数器限流和滑动窗口计数器限流,下面将对这几种限流方式进行简单的介绍及代码实现。
注意:代码中会考虑并发线程安全问题,非分布式限流
Github地址:重构后的代码
固定窗口计数器限流
固定窗口计数器限流就是在固定时间内(如10s),只允许固定的请求数访问(如10个),超过的请求将受到限制。
实现逻辑图
实现代码
package com.dfy.ratelimiter.core; import java.util.concurrent.TimeUnit; /** * @description: 计数器限流 * @author: DFY * @time: 2020/4/8 17:02 */ public abstract class CounterLimit { /** 单位时间限制数 */ protected int limitCount; /** 限制时间 */ protected long limitTime; /** 时间单位,默认为秒 */ protected TimeUnit timeUnit; /** 当前是否为受限状态 */ protected volatile boolean limited; /** * 尝试将计数器加1,返回为true表示能够正常访问接口,false表示访问受限 * @return */ protected abstract boolean tryCount(); }
package com.dfy.ratelimiter.core; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.time.LocalDateTime; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicInteger; /** * @description: 固定窗口计数器限流 * @author: DFY * @time: 2020/4/8 15:50 */ public class FixedWindowCounterLimit extends CounterLimit { private static Logger logger = LoggerFactory.getLogger(FixedWindowCounterLimit.class); /** 计数器 */ private AtomicInteger counter = new AtomicInteger(0); public FixedWindowCounterLimit(int limitCount, long limitTime) { this(limitCount, limitTime, TimeUnit.SECONDS); } public FixedWindowCounterLimit(int limitCount, long limitTime, TimeUnit timeUnit) { this.limitCount = limitCount; this.limitTime = limitTime; this.timeUnit = timeUnit; new Thread(new CounterResetThread()).start(); // 开启计数器清零线程 } public boolean tryCount() { while (true) { if (limited) { return false; } else { int currentCount = counter.get(); if (currentCount == limitCount) { logger.info("限流:{}", LocalDateTime.now().toString()); limited = true; return false; } else { if (counter.compareAndSet(currentCount, currentCount + 1)) return true; } } } } class CounterResetThread implements Runnable { @Override public void run() { while (true) { try { timeUnit.sleep(limitTime); counter.compareAndSet(limitCount, 0); // 计数器清零 limited = false; // 修改当前状态为不受限 } catch (InterruptedException e) { e.printStackTrace(); } } } } }
使用及测试
启动项目,连续访问接口,当在访问第11次时接口受限,受限时间到后又能正常访问。
private FixedWindowCounterLimit fixedWindowCounterLimit = new FixedWindowCounterLimit(10, 10); @GetMapping("/hello") public String hello() { if (!fixedWindowCounterLimit.tryCount()) { return "限流!"; } return "hello world!"; }
存在的问题
限流不均匀,如下所示我们规定10S内至多10个访问量,但2S内实际上有20个访问量。
滑动窗口计数器限流
固定窗口计数器限流是在固定时间内访问量受限,滑动窗口计数器限流是在滑动窗口内访问量受限。
例子
如下是规定5S内不能超过10个访问量,当已经达到10个访问量,则访问受限。使用该方式可以使受限均匀,任意连续的5S内都只能有10个访问量。
实现代码
package com.dfy.ratelimiter.core; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.time.LocalDateTime; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicInteger; /** * @description: 滑动窗口计数器限流 * @author: DFY * @time: 2020/4/8 17:01 */ public class SlidingWindowCounterLimit extends CounterLimit { private static Logger logger = LoggerFactory.getLogger(SlidingWindowCounterLimit.class); /** 格子分布 */ private AtomicInteger[] gridDistribution; /** 当前时间在计数分布的索引 */ private volatile int currentIndex; /** 当前时间之前的滑动窗口计数 */ private int preTotalCount; /** 格子数 */ private int gridNumber; /** 是否正在执行状态重置 */ private volatile boolean resetting; public SlidingWindowCounterLimit(int gridNumber, int limitCount, long limitTime) { this(gridNumber, limitCount, limitTime, TimeUnit.SECONDS); } public SlidingWindowCounterLimit(int gridNumber, int limitCount, long limitTime, TimeUnit timeUnit) { if (gridNumber <= limitTime) throw new RuntimeException("无法完成限流,gridNumber必须大于limitTime,gridNumber = " + gridNumber + ",limitTime = " + limitTime); this.gridNumber = gridNumber; this.limitCount = limitCount; this.limitTime = limitTime; this.timeUnit = timeUnit; gridDistribution = new AtomicInteger[gridNumber]; for (int i = 0; i < gridNumber; i++) { gridDistribution[i] = new AtomicInteger(0); } new Thread(new CounterResetThread()).start(); } public boolean tryCount() { while (true) { if (limited) { return false; } else { int currentGridCount = gridDistribution[currentIndex].get(); if (preTotalCount + currentGridCount == limitCount) { logger.info("限流:{}", LocalDateTime.now().toString()); limited = true; return false; } if (!resetting && gridDistribution[currentIndex].compareAndSet(currentGridCount, currentGridCount + 1)) return true; } } } class CounterResetThread implements Runnable { @Override public void run() { while (true) { try { timeUnit.sleep(1); // 停止1个时间单位 int indexToReset = currentIndex - limitCount - 1; // 要重置计数的格子索引 if (indexToReset < 0) indexToReset += gridNumber; resetting = true; // 防止在更新状态时,用户访问接口将当前格子的访问量 + 1 preTotalCount = preTotalCount - gridDistribution[indexToReset].get() + gridDistribution[currentIndex++].get(); // 重置当前时间之前的滑动窗口计数 if (currentIndex == gridNumber) currentIndex = 0; if (preTotalCount + gridDistribution[currentIndex].get() < limitCount) limited = false; // 修改当前状态为不受限 resetting = false; logger.info("当前格子:{},重置格子:{},重置格子访问量:{},前窗口格子总数:{}", currentIndex, indexToReset, gridDistribution[indexToReset].get(), preTotalCount); gridDistribution[indexToReset].set(0); } catch (InterruptedException e) { e.printStackTrace(); } } } } }
使用及测试
private SlidingWindowCounterLimit slidingWindowCounterLimit = new SlidingWindowCounterLimit(20, 10, 10); @GetMapping("/hello") public String hello() { if (!slidingWindowCounterLimit.tryCount()) { return "限流!"; } return "hello world!"; }
令牌桶限流
Google guava的RateLimiter提供了基于令牌桶算法的两种实现,下面代码只是简单实现。
package com.dfy.ratelimiter.core; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.time.LocalDateTime; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicInteger; /** * @description: 令牌桶限流 * @author: DFY * @time: 2020/4/10 15:35 */ public class TokenBucketLimit { private static Logger logger = LoggerFactory.getLogger(TokenBucketLimit.class); /** 给定时间生成令牌数 */ private int genNumber; /** 生成令牌所花费的时间 */ private int genTime; /** 时间单位,默认为秒 */ private TimeUnit timeUnit; /** 最大令牌数 */ private int maxNumber; /** 已存储的令牌数 */ private AtomicInteger storedNumber; public TokenBucketLimit(int genNumber, int genTime, int maxNumber) { this(genNumber, genTime, TimeUnit.SECONDS, maxNumber); } public TokenBucketLimit(int genNumber, int genTime, TimeUnit timeUnit, int maxNumber) { this.genNumber = genNumber; this.genTime = genTime; this.timeUnit = timeUnit; this.maxNumber = maxNumber; this.storedNumber = new AtomicInteger(0); new Thread(new TokenGenerateThread()).start(); } public boolean tryAcquire() { while (true) { int currentStoredNumber = storedNumber.get(); if (currentStoredNumber == 0) { logger.info("限流:{}", LocalDateTime.now().toString()); return false; } if (storedNumber.compareAndSet(currentStoredNumber, currentStoredNumber - 1)) { return true; } } } class TokenGenerateThread implements Runnable { @Override public void run() { while (true) { if (storedNumber.get() == maxNumber) { logger.info("当前令牌数已满"); try { timeUnit.sleep(genTime); } catch (InterruptedException e) { e.printStackTrace(); } } else { int old = storedNumber.get(); int newValue = old + genNumber; if (newValue > maxNumber) newValue = maxNumber; storedNumber.compareAndSet(old, newValue); logger.info("生成令牌数:{},当前令牌数:{}", genNumber, newValue); try { timeUnit.sleep(genTime); } catch (InterruptedException e) { e.printStackTrace(); } } } } } }
漏桶算法
漏桶限流的实现与令牌桶限流类似,只是一个是按固定速率增加,一个按固定速率减少。
package com.dfy.ratelimiter.core; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.time.LocalDateTime; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicInteger; /** * @description: 漏桶限流 * @author: DFY * @time: 2020/4/13 14:47 */ public class LeakyBucketLimit { private static Logger logger = LoggerFactory.getLogger(LeakyBucketLimit.class); /** 桶最大容量 */ private int maxNumber; /** 时间单位,默认为秒 */ private TimeUnit timeUnit; /** 泄露的数量 */ private int leakNumber; /** 泄露的时间 */ private int leakTime; /** 桶中剩余数量 */ private AtomicInteger remainingNumber; public LeakyBucketLimit(int leakNumber, int leakTime, int maxNumber) { this(leakNumber, leakTime, TimeUnit.SECONDS, maxNumber); } public LeakyBucketLimit(int leakNumber, int leakTime, TimeUnit timeUnit, int maxNumber) { this.leakNumber = leakNumber; this.leakTime = leakTime; this.timeUnit = timeUnit; this.maxNumber = maxNumber; this.remainingNumber = new AtomicInteger(0); } public boolean tryAcquire() { while (true) { int currentStoredNumber = remainingNumber.get(); if (currentStoredNumber == maxNumber) { logger.info("限流:{}", LocalDateTime.now().toString()); return false; } if (remainingNumber.compareAndSet(currentStoredNumber, currentStoredNumber + 1)) { return true; } } } class LeakThread implements Runnable { @Override public void run() { while (true) { if (remainingNumber.get() == 0) { logger.info("当前桶已空"); try { timeUnit.sleep(leakTime); } catch (InterruptedException e) { e.printStackTrace(); } } else { int old = remainingNumber.get(); int newValue = old - leakNumber; if (newValue < 0) newValue = 0; remainingNumber.compareAndSet(old, newValue); logger.info("泄露:{},当前:{}", leakNumber, newValue); try { timeUnit.sleep(leakTime); } catch (InterruptedException e) { e.printStackTrace(); } } } } } }