在训练过程中,往往会遇到中断,如在
Colab
和Kaggle
中,由于网络不稳定,很容易就断开了连接。然而,即使可以稳定训练,但是训练的时长往往是有上限的,此时我们的网络参数训练的可能还未收敛仍然需要训练,所以,应该加载原训练基础上再进行训练是十分很重要的。比如,要训练1000代才能收敛,但是目前只训练的100代就中断了,所以要加载第100代训练的模型参数,然后训练接下来的900代
pytorch
模型的保存机制
修改训练代码
中断的训练代码最简单的修改方式便是复制一份训练的代码,然后在其基础上进行修改,涉及到最重要的部分就是模型的保存与加载
🅰若优化器optimizer
不需要随着训练的修改,那么直接加载模型、优化器,之后进行训练即可
🅱若优化器需要训练,那么可以进行一下修改:
if epoch == epochs_g + 1:
optimizer_r.load_state_dict(checkpoint_r['optimizer'])
optimizer_g.load_state_dict(checkpoint_g['optimizer'])
lr_r = checkpoint_r['lr']
lr_g = checkpoint_g['lr']
else:
optimizer_r = optim.Adagrad(model_r.parameters(), lr = lr_r, weight_decay = 1e-5)
optimizer_g = optim.Adagrad(model_g.parameters(), lr = lr_g, weight_decay = 1e-5)
- 继续训练的第一次是利用模型保存下来的,而之后则是修改的优化器
如:我的模型每训练50次进行learning rate
减半,初始学习率为0.001
,而我的模型训练到第40代中断,所以加载第40代模型继续进行训练
python "train_continue.py" --pre_model_r './LapSRN_r_epoch_40.pt' --pre_model_g './LapSRN_g_epoch_40.pt' --nEpochs 60 --cuda --batchSize 1 --dataset "../../DataSet_test/"
可以看看优化器的变化如下:
Namespace(batchSize=1, cuda=True, dataset='../../DataSet_test/', lr=0.001, nEpochs=60, pre_model_g='./LapSRN_g_epoch_40.pt', pre_model_r='./LapSRN_r_epoch_40.pt', save_models='./', save_train_csv='./train.csv', save_val_csv='/val.csv', seed=123, valBatchSize=1)
===> Loading datasets
===> Loading pre_train model and Building model
Adagrad (
Parameter Group 0
eps: 1e-10
initial_accumulator_value: 0
lr: 0.001
lr_decay: 0
weight_decay: 1e-05
)
===> Epoch 41 Complete: Avg. Loss: 0.0381
===> Avg. PSNR1: 26.2686 dB
===> Avg. PSNR2: 25.1278 dB
Adagrad (
Parameter Group 0
eps: 1e-10
initial_accumulator_value: 0
lr: 0.001
lr_decay: 0
weight_decay: 1e-05
)
===> Epoch 42 Complete: Avg. Loss: 0.0789
===> Avg. PSNR1: 13.8764 dB
===> Avg. PSNR2: 16.7824 dB
.........省略部分..........
Adagrad (
Parameter Group 0
eps: 1e-10
initial_accumulator_value: 0
lr: 0.001
lr_decay: 0
weight_decay: 1e-05
)
===> Epoch 49 Complete: Avg. Loss: 0.0749
===> Avg. PSNR1: 25.5121 dB
===> Avg. PSNR2: 25.1218 dB
Adagrad (
Parameter Group 0
eps: 1e-10
initial_accumulator_value: 0
lr: 0.001
lr_decay: 0
weight_decay: 1e-05
)
===> Epoch 50 Complete: Avg. Loss: 0.0877
===> Avg. PSNR1: 28.2393 dB
===> Avg. PSNR2: 26.6869 dB
Checkpoint saved to ./LapSRN_r_epoch_50.pt and ./LapSRN_g_epoch_50.pt
Adagrad (
Parameter Group 0
eps: 1e-10
initial_accumulator_value: 0
lr: 0.0005
lr_decay: 0
weight_decay: 1e-05
)
===> Epoch 51 Complete: Avg. Loss: 0.2914
===> Avg. PSNR1: 27.3521 dB
===> Avg. PSNR2: 25.3298 dB
Adagrad (
Parameter Group 0
eps: 1e-10
initial_accumulator_value: 0
lr: 0.0005
lr_decay: 0
weight_decay: 1e-05
)
===> Epoch 52 Complete: Avg. Loss: 0.0505
===> Avg. PSNR1: 21.9110 dB
===> Avg. PSNR2: 21.8041 dB
Adagrad (
Parameter Group 0
eps: 1e-10
initial_accumulator_value: 0
lr: 0.0005
lr_decay: 0
weight_decay: 1e-05
)
样例学习
中断训练train_continue.py
代码如下,可供参考学习: