## 图像数据读取
import cv2
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
img = cv2.imread('0.jpg') # 读取图像 opencv读取的是BGR格式
# 图像的显示 也可以创建多个窗口
cv2.imshow('image', img)
# 等待时间 毫秒级 0表示按键盘任意键终止
cv2.waitKey(0)
cv2.destroyAllWindows() # 销毁窗口
def cv_show(name, img):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# cv2.IMREAD_COLOR: 彩色图像
# cv2.IMREAD_GRAYSCALE: 灰度图像
img = cv2.imread('0.jpg', cv2.IMREAD_GRAYSCALE) # 读取为灰度图像
cv_show('cat', img)
cv2.imwrite('cat.jpg', img) # 图像保存
type(img) # 图像格式
## 视频数据读取
import cv2
vc = cv2.VideoCapture('1.mp4') # 视频流
# 检查是否打开正确
if vc.isOpened():
open, frame = vc.read()
else:
open = False
# print(open)
# print(frame)
while open: # 读取视频一帧一帧读图像
rel, frame = vc.read()
if frame is None:
break
if rel == True:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 变成灰度图像
cv2.imshow('result', gray)
if cv2.waitKey(100) & 0xFF == 27: # 等100毫秒播一帧
break
vc.release()
cv2.destroyAllWindows()
### 截取部分图片数据
import cv2
img = cv2.imread('0.jpg')
cat = img[200:400, 200:400]
cv2.imshow('cat', cat)
cv2.waitKey(0)
cv2.destroyAllWindows()
### 颜色通道提取
b, g, r = cv2.split(img) # 切分
img = cv2.merge((b, g, r)) # 合并
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv_show('cat', img)
# 只保留b
cur_img = img.copy()
cur_img[:, :, 0] = 0
cur_img[:, :, 1] = 0
cv_show('G', cur_img)
# 只保留g
cur_img = img.copy()
cur_img[:, :, 0] = 0
cur_img[:, :, 2] = 0
cv_show('B', cur_img)
# 只保留r
cur_img = img.copy()
cur_img[:, :, 1] = 0
cur_img[:, :, 2] = 0
cv_show('R', cur_img)
reflect = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REFLECT) # 反射法
reflect101 = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REFLECT_101) # 反射法
wrap = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_WRAP) # 外包装法
constant = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_CONSTANT, value=0) # 常量法
plt.subplot(231), plt.imshow(img, 'gray'), plt.title('ORIGINAL')
plt.subplot(232), plt.imshow(replicate, 'gray'), plt.title('REFLECT')
plt.subplot(233), plt.imshow(reflect101, 'gray'), plt.title('REFLECT_101')
plt.subplot(234), plt.imshow(reflect, 'gray'), plt.title('REFLECT')
plt.subplot(235), plt.imshow(wrap, 'gray'), plt.title('WRAP')
plt.subplot(236), plt.imshow(constant, 'gray'), plt.title('CONSTANT')
plt.show()
cv_show('cat', img)
img_cat = img + 10 # 每个像素点的值+10 值超过255后 经过对256取余得到
cv_show('cat+10', img_cat)
cv_show('img_3', img_3) # 越界对256取余
cv_show('img_4', img_4) # 越界取255
# cv_show('img_Dog', img_dog)
print(img_dog.shape)
img_dog_1 = cv2.resize(img_dog, (500, 314))
print(img_dog_1.shape)
cv_show('img_dog_1', img_dog_1)
cv_show('img_dog_2', img_dog_2)
res = cv2.addWeighted(img_cat, 0.8, img_dog_1, 0.6, 0) # 权重 权重 偏置值
cv_show('res', res)
