#include <torch/script.h>
#include <torch/torch.h>
#include <torch/Tensor.h>
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
/* main */
int main(int argc, const char* argv[]) {
if (argc < 4) {
std::cerr << "usage: example-app <path-to-exported-script-module> "
<< "<path-to-image> <path-to-category-text>\n";
return -1;
}
// Deserialize the ScriptModule from a file using torch::jit::load().
std::shared_ptr<torch::jit::script::Module> module = torch::jit::load(argv[1]);
assert(module != nullptr);
std::cout << "load model ok\n";
// Create a vector of inputs.
std::vector<torch::jit::IValue> inputs;
inputs.push_back(torch::rand({64, 3, 224, 224}));
// evalute time
double t = (double)cv::getTickCount();
module->forward(inputs).toTensor();
t = (double)cv::getTickCount() - t;
printf("execution time = %gs\n", t / cv::getTickFrequency());
inputs.pop_back();
// load image with opencv and transform
cv::Mat image;
image = cv::imread(argv[2], 1);
cv::cvtColor(image, image, CV_BGR2RGB);
cv::Mat img_float;
image.convertTo(img_float, CV_32F, 1.0/255);
cv::resize(img_float, img_float, cv::Size(224, 224));
//std::cout << img_float.at<cv::Vec3f>(56,34)[1] << std::endl;
auto img_tensor = torch::CPU(torch::kFloat32).tensorFromBlob(img_float.data, {1, 224, 224, 3});
img_tensor = img_tensor.permute({0,3,1,2});
img_tensor[0][0] = img_tensor[0][0].sub_(0.485).div_(0.229);
img_tensor[0][1] = img_tensor[0][1].sub_(0.456).div_(0.224);
img_tensor[0][2] = img_tensor[0][2].sub_(0.406).div_(0.225);
auto img_var = torch::autograd::make_variable(img_tensor, false);
inputs.push_back(img_var);
// Execute the model and turn its output into a tensor.
torch::Tensor out_tensor = module->forward(inputs).toTensor();
std::cout << out_tensor.slice(/*dim=*/1, /*start=*/0, /*end=*/10) << '\n';
// Load labels
std::string label_file = argv[3];
std::ifstream rf(label_file.c_str());
CHECK(rf) << "Unable to open labels file " << label_file;
std::string line;
std::vector<std::string> labels;
while (std::getline(rf, line))
labels.push_back(line);
// print predicted top-5 labels
std::tuple<torch::Tensor,torch::Tensor> result = out_tensor.sort(-1, true);
torch::Tensor top_scores = std::get<0>(result)[0];
torch::Tensor top_idxs = std::get<1>(result)[0].toType(torch::kInt32);
auto top_scores_a = top_scores.accessor<float,1>();
auto top_idxs_a = top_idxs.accessor<int,1>();
for (int i = 0; i < 5; ++i) {
int idx = top_idxs_a[i];
std::cout << "top-" << i+1 << " label: ";
std::cout << labels[idx] << ", score: " << top_scores_a[i] << std::endl;
}
return 0;
}
主要要求:PyTroch 1.0,opencv,cmake
步骤1
转换您的PYTORCH模型以编写脚本并将其脚本化为文件
运行python tracing.py并获取model.pt
第2步
用C ++加载脚本模块并执行
在此处下载LibTorch并解压缩
麦克马
mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=/Users/hankai/code/cpp-pytorch/libtorch ..
make
Run demo
./example-app ../model.pt ../dog.png ../synset_words.txt
输入图像和预测标签
