spring-cloud-netflix-hystrix 原理源码分析:
本文主要针对 spring-cloud-dependencies Hoxton.SR4版本, spring-cloud-starter-netflix-hystrix 源码的解析。
对于未接触过 hystrix 的小伙伴可以参考 https://www.cnblogs.com/wuzhenzhao/p/9473073.html 进行一些基础知识的了解。
本文主要从以下几个点来分析:
- 手写实现简易版 Hystrix 体验。
- RXJava 基础知识体验。
- Hystrix 源码流程分析。
手写实现简易版 Hystrix 体验:
继上文的博客链接,我们知道了Hystrix 提供了多种方式让我们实现服务降级。我们可以通过注解 @HystrixCommand、或者继承 HystrixCommand 来实现降级,以及一些请求合并等操作。
我们需要知道的是,当我们采用 @HystrixCommand 注解来实现服务降级,在Hystrix 的内部是采用 AOP 的方式进行拦截处理请求的,我们这里就先来实现一下简易版的 Hystrix 来体会一下,主要分为以下步骤
- 定义自己的@HystrixCommand 注解。
- 实现拦截请求的处理逻辑。
- 测试调用。
1.自定义注解 @WuzzHystrixCommand
@Target(ElementType.METHOD) @Retention(RetentionPolicy.RUNTIME) @Documented public @interface WuzzHystrixCommand { /** * 默认超时时间 * * @return */
int timeout() default 1000; /** * 回退方法 * * @return */ String fallback() default ""; }
2.编写切面类,实现简易的逻辑处理
@Component @Aspect public class WuzzHystrixCommandAspect { //线程池的处理,基于这个线程池的处理统计可以达到 THREAD 资源限流
ExecutorService executorService = Executors.newFixedThreadPool(10); //注解切点
@Pointcut(value = "@annotation(com.wuzz.demo.custom.hystrix.WuzzHystrixCommand)") public void pointCut() { } //环绕通知
@Around(value = "pointCut()&&@annotation(hystrixCommand)") public Object doPointCut(ProceedingJoinPoint joinPoint, WuzzHystrixCommand hystrixCommand) throws InterruptedException, ExecutionException, TimeoutException, NoSuchMethodException, InvocationTargetException, IllegalAccessException { int timeout = hystrixCommand.timeout(); //前置的判断逻辑
Future future = executorService.submit(() -> { try { return joinPoint.proceed(); //执行目标方法
} catch (Throwable throwable) { throwable.printStackTrace(); } return null; }); Object result; try {// 使用 future 来实现超时
result = future.get(timeout, TimeUnit.MILLISECONDS); } catch (InterruptedException | ExecutionException | TimeoutException e) { e.printStackTrace(); future.cancel(true); // ?
if (StringUtils.isBlank(hystrixCommand.fallback())) { throw e; } //调用fallback
result = invokeFallback(joinPoint, hystrixCommand.fallback()); } return result; } private Object invokeFallback(ProceedingJoinPoint joinPoint, String fallback) throws NoSuchMethodException, InvocationTargetException, IllegalAccessException { //获取被代理的方法的参数和Method
MethodSignature signature = (MethodSignature) joinPoint.getSignature(); Method method = signature.getMethod(); Class<?>[] parameterTypes = method.getParameterTypes(); //得到fallback方法
try { Method fallbackMethod = joinPoint.getTarget().getClass().getMethod(fallback, parameterTypes); fallbackMethod.setAccessible(true); //完成反射调用
return fallbackMethod.invoke(joinPoint.getTarget(), joinPoint.getArgs()); } catch (Exception e) { e.printStackTrace(); throw e; } } }
3. 编写测试,调用:
@WuzzHystrixCommand(fallback = "customFallback", timeout = 3000) @GetMapping("/custom/hystrix/test") public String test() { Map map = new HashMap<>(); map.put("id", 666); return restTemplate.getForObject(REST_URL_PREFIX + "/hello?id={id}", String.class, map); } public String customFallback() { return "custom 请求被降级"; }
正常得调用是没有问题的,这个时候我们把服务提供方的服务接口里 sleep 3秒来模仿调用超时,在访问接口:
相信小伙伴们有了一些心得了,只不过Hystrix里面得实现是很复杂的 ,没有我们这么简单。
RXJava 基础知识体验:
上文的博文连接中也讲到了 RXJava的简单例子,这里由于马上我们要去看 Hystrix的源码了,我们这里写一个类似于源码中的例子,这样来帮助我们更容易理解。
public class RxJavaDemo { // ReactiveX Java 响应式编程框架(android) // Java stream() java8 //观察者模式
public static void main(String[] args) throws ExecutionException, InterruptedException { final String[] datas = new String[]{"登录"}; final Action0 onComplated = new Action0() { @Override public void call() { System.out.println("on Complated"); } }; //老师(被观察者)
Observable<String> observable = Observable.defer(new Func0<Observable<String>>() { @Override public Observable<String> call() { Observable observable1 = Observable.from(datas); return observable1.doOnCompleted(onComplated); } }); //学生(观察者)
Observer observer = new Observer() { @Override public void onCompleted() { System.out.println("Observer: onCompleted"); } @Override public void onError(Throwable throwable) { System.out.println("Observer: onError"); } @Override public void onNext(Object o) { System.out.println("on Next:" + o); } }; // observable.subscribe(observer); //建立订阅关系
String s = observable.toBlocking().toFuture().get();//建立订阅关系
System.out.println(s); } }
写这个例子的目的主要是想说明,我们可能对于 RXJava 的 API可能不是很熟悉,但是我们一定要知道对于 Observable 实例来说, call 方法才是关键,而 observable.toBlocking().toFuture().get() 是用于获取执行结果的。在 Hystrix的源码中能看到。了解一下,我们直接进入Hystrix的源码
Hystrix 源码流程分析:
需要注意的是,Hystrix用到了RxJava这个框架,它是一个响应式编程框架,在Android里面用得比较多,所以很多同学对它不是很了解。如果不了解的话,看Hystrix的源码就会有点困难。
Hystrix的数据统计是采用的滑动窗口,关于滑动窗口我这里就不深入研究了,又兴趣的同学可以参考我另外一篇博客, Sentinel 限流原理 进行了解,也可以直接访问 滑动窗口在线演示地址。
Hystrix熔断的@HystrixCommand注解,是通过HystrixCommandAspect这个切面来处理的。其中我们关注@Around注解声明的方法,它针对于请求合并,以及降级的注解进行代理。这里我们重点针对HystrixCommand这个注解进行详细分析。
@Aspect public class HystrixCommandAspect { private static final Map<HystrixPointcutType, MetaHolderFactory> META_HOLDER_FACTORY_MAP; static { META_HOLDER_FACTORY_MAP = ImmutableMap.<HystrixPointcutType, MetaHolderFactory>builder() .put(HystrixPointcutType.COMMAND, new CommandMetaHolderFactory()) .put(HystrixPointcutType.COLLAPSER, new CollapserMetaHolderFactory()) .build(); } // 熔断降级切点
@Pointcut("@annotation(com.netflix.hystrix.contrib.javanica.annotation.HystrixCommand)") public void hystrixCommandAnnotationPointcut() { } // 请求合并切点
@Pointcut("@annotation(com.netflix.hystrix.contrib.javanica.annotation.HystrixCollapser)") public void hystrixCollapserAnnotationPointcut() { } // 环绕通知
@Around("hystrixCommandAnnotationPointcut() || hystrixCollapserAnnotationPointcut()") public Object methodsAnnotatedWithHystrixCommand(final ProceedingJoinPoint joinPoint) throws Throwable { // 获取目标方法信息
Method method = getMethodFromTarget(joinPoint); Validate.notNull(method, "failed to get method from joinPoint: %s", joinPoint); if (method.isAnnotationPresent(HystrixCommand.class) && method.isAnnotationPresent(HystrixCollapser.class)) { throw new IllegalStateException("method cannot be annotated with HystrixCommand and HystrixCollapser " +
"annotations at the same time"); } MetaHolderFactory metaHolderFactory = META_HOLDER_FACTORY_MAP.get(HystrixPointcutType.of(method)); // 获取元数据,比如调用方法,HystrixProperty注解数据、方法参数等
MetaHolder metaHolder = metaHolderFactory.create(joinPoint); //获取调用者,它持有一个命令对象,并且可以在合适的时候通过这个命令对象完成具体的业务逻辑
HystrixInvokable invokable = HystrixCommandFactory.getInstance().create(metaHolder); ExecutionType executionType = metaHolder.isCollapserAnnotationPresent() ? metaHolder.getCollapserExecutionType() : metaHolder.getExecutionType(); Object result; try { //是否是响应式的(由于我们这些都是同步的会走这个逻辑)
if (!metaHolder.isObservable()) { result = CommandExecutor.execute(invokable, executionType, metaHolder); } else { result = executeObservable(invokable, executionType, metaHolder); } } catch (HystrixBadRequestException e) { throw e.getCause(); } catch (HystrixRuntimeException e) { throw hystrixRuntimeExceptionToThrowable(metaHolder, e); } return result; } // ......
}
然后进入 CommandExecutor#execute 方法这个方法主要用来执行命令,从代码中可以看出这里有三个执行类型,分别是同步、异步、以及响应式。其中,响应式又分为Cold Observable(observable.toObservable()) 和 HotObservable(observable.observe())默认的executionType=SYNCHRONOUS ,同步请求。
- execute():同步执行,返回一个单一的对象结果,发生错误时抛出异常。
- queue():异步执行,返回一个 Future 对象,包含着执行结束后返回的单一结果。
- observe():这个方法返回一个 Observable 对象,它代表操作的多个结果,但是已经被订阅者消费掉了。
- toObservable():这个方法返回一个 Observable 对象,它代表操作的多个结果,需要咱们自己手动订阅并消费掉。
接着调用HystrixCommand.execute()方法,这个方法中,首先调用queue(),这个方法会返回一个future对象。
public R execute() { try { return queue().get(); } catch (Exception e) { throw Exceptions.sneakyThrow(decomposeException(e)); } }
queue这个方法中,返回了一个Future对象,这个future对象的实现是f,f是以匿名内部类,它是Java.util.concurrent中定一个的一个异步带返回值对象。当调用queue().get()方法时,最终是委派给了delegate.get 方法。
public Future<R> queue() { /* * The Future returned by Observable.toBlocking().toFuture() does not implement the * interruption of the execution thread when the "mayInterrupt" flag of Future.cancel(boolean) is set to true; * thus, to comply with the contract of Future, we must wrap around it. */ final Future<R> delegate = toObservable().toBlocking().toFuture(); final Future<R> f = new Future<R>() { @Override public boolean cancel(boolean mayInterruptIfRunning) { // ......省略代码
@Override public R get() throws InterruptedException, ExecutionException { return delegate.get(); } @Override public R get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { return delegate.get(timeout, unit); } }; // ...省略代码
return f; }
在上述代码中,重点来了,构建了一个 java.util.concurrent.Future ,然后调用 get的时候委派给 delegate,而 delegate来自于 toObservable().toBlocking().toFuture(); 这正是我们上面例子里面得代码。所以我们现在的重点应该放在 toObservable() 方法中:
AbstractCommand.toObservable :通过Observable定义一个被观察者,这个被观察者会被toObservable().toBlocking().toFuture() ,实际上就是返回可获得 run() 抽象方法执行结果的Future 。 run() 方法由子类实现,执行正常的业务逻辑。在下面这段代码中,当存在subscriber时,便会调用Func0#call() 方法,而这个subscriber是在 toBlocking() 中被订阅的。到这还是我们上面的例子里面的代码。该方法主要做了以下几件事:
-
创建一些命令供后续的回调使用
-
调用 isRequestCachingEnabled(); 判断请求结果缓存功能是否开启,如果开启并且命中了缓存,则会以Observable形式返回一个缓存结果
-
创建执行命令的Observable: hystrixObservable,
-
当缓存处于开启状态并且没有命中缓存时,则创建一个“订阅了执行命令的Observable”:HystrixCommandResponseFromCache
-
创建存储到缓存的Observable: HystrixCachedObservable当缓存特性没有开启时,则返回执行命令的Observable。
-
将toCache添加到缓存中,返回获取缓存的Observable:fromCache
-
如果添加失败: fromCache!=null, 则调用 toCache.unsubscribe() 方法,取消HystrixCachedObservable 的订阅
-
如果添加成功,则调用 toCache.toObservable(); 获得缓存Observable
-
-
当缓存特性没有开启时,则返回执行命令的Observable。
public Observable<R> toObservable() { final AbstractCommand<R> _cmd = this; //会在Observable结束前触发回调该call方法,无论是正常还是异常终止 //doOnCompleted handler already did all of the SUCCESS work //doOnError handler already did all of the FAILURE/TIMEOUT/REJECTION/BAD_REQUEST work
final Action0 terminateCommandCleanup = new Action0() { @Override public void call() { if (_cmd.commandState.compareAndSet(CommandState.OBSERVABLE_CHAIN_CREATED, CommandState.TERMINAL)) { handleCommandEnd(false); //user code never ran
} else if (_cmd.commandState.compareAndSet(CommandState.USER_CODE_EXECUTED, CommandState.TERMINAL)) { handleCommandEnd(true); //user code did run
} } }; //取消订阅时的监听会进行回调该 call方法 //mark the command as CANCELLED and store the latency (in addition to standard cleanup)
final Action0 unsubscribeCommandCleanup = new Action0() { @Override public void call() { if (_cmd.commandState.compareAndSet(CommandState.OBSERVABLE_CHAIN_CREATED, CommandState.UNSUBSCRIBED)) { if (!_cmd.executionResult.containsTerminalEvent()) { _cmd.eventNotifier.markEvent(HystrixEventType.CANCELLED, _cmd.commandKey); try { executionHook.onUnsubscribe(_cmd); } catch (Throwable hookEx) { logger.warn("Error calling HystrixCommandExecutionHook.onUnsubscribe", hookEx); } _cmd.executionResultAtTimeOfCancellation = _cmd.executionResult .addEvent((int) (System.currentTimeMillis() - _cmd.commandStartTimestamp), HystrixEventType.CANCELLED); } handleCommandEnd(false); //user code never ran
} else if (_cmd.commandState.compareAndSet(CommandState.USER_CODE_EXECUTED, CommandState.UNSUBSCRIBED)) { if (!_cmd.executionResult.containsTerminalEvent()) { _cmd.eventNotifier.markEvent(HystrixEventType.CANCELLED, _cmd.commandKey); try { executionHook.onUnsubscribe(_cmd); } catch (Throwable hookEx) { logger.warn("Error calling HystrixCommandExecutionHook.onUnsubscribe", hookEx); } _cmd.executionResultAtTimeOfCancellation = _cmd.executionResult .addEvent((int) (System.currentTimeMillis() - _cmd.commandStartTimestamp), HystrixEventType.CANCELLED); } handleCommandEnd(true); //user code did run
} } }; final Func0<Observable<R>> applyHystrixSemantics = new Func0<Observable<R>>() { @Override public Observable<R> call() { if (commandState.get().equals(CommandState.UNSUBSCRIBED)) { return Observable.never(); // 立即终止整个流程。
}//返回执行命令的Observable
return applyHystrixSemantics(_cmd); } }; final Func1<R, R> wrapWithAllOnNextHooks = new Func1<R, R>() { @Override public R call(R r) { R afterFirstApplication = r; try { afterFirstApplication = executionHook.onComplete(_cmd, r); } catch (Throwable hookEx) { logger.warn("Error calling HystrixCommandExecutionHook.onComplete", hookEx); } try { return executionHook.onEmit(_cmd, afterFirstApplication); } catch (Throwable hookEx) { logger.warn("Error calling HystrixCommandExecutionHook.onEmit", hookEx); return afterFirstApplication; } } }; final Action0 fireOnCompletedHook = new Action0() { @Override public void call() { try { executionHook.onSuccess(_cmd); } catch (Throwable hookEx) { logger.warn("Error calling HystrixCommandExecutionHook.onSuccess", hookEx); } } }; return Observable.defer(new Func0<Observable<R>>() { @Override public Observable<R> call() { /* this is a stateful object so can only be used once */
// CAS保证命令只执行一次
if (!commandState.compareAndSet(CommandState.NOT_STARTED, CommandState.OBSERVABLE_CHAIN_CREATED)) { IllegalStateException ex = new IllegalStateException("This instance can only be executed once. Please instantiate a new instance."); //TODO make a new error type for this
throw new HystrixRuntimeException(FailureType.BAD_REQUEST_EXCEPTION, _cmd.getClass(), getLogMessagePrefix() + " command executed multiple times - this is not permitted.", ex, null); } // 命令开始时间戳
commandStartTimestamp = System.currentTimeMillis(); // 打印日志
if (properties.requestLogEnabled().get()) { // log this command execution regardless of what happened
if (currentRequestLog != null) { currentRequestLog.addExecutedCommand(_cmd); } } // 缓存开关,缓存KEY(这个是Hystrix中请求缓存功能,hystrix支持将一个请求结果缓存起来, // 下一个具有相同key的请求将直接从缓存中取出结果,减少请求开销)
final boolean requestCacheEnabled = isRequestCachingEnabled(); final String cacheKey = getCacheKey(); /* try from cache first */
if (requestCacheEnabled) {//如果开启了缓存机制,则从缓存中获取结果
HystrixCommandResponseFromCache<R> fromCache = (HystrixCommandResponseFromCache<R>) requestCache.get(cacheKey); if (fromCache != null) { isResponseFromCache = true; return handleRequestCacheHitAndEmitValues(fromCache, _cmd); } } // 声明执行命令的Observable
Observable<R> hystrixObservable = Observable.defer(applyHystrixSemantics) .map(wrapWithAllOnNextHooks); Observable<R> afterCache; // put in cache 保存请求结果到缓存中
if (requestCacheEnabled && cacheKey != null) { // wrap it for caching
HystrixCachedObservable<R> toCache = HystrixCachedObservable.from(hystrixObservable, _cmd); HystrixCommandResponseFromCache<R> fromCache = (HystrixCommandResponseFromCache<R>) requestCache.putIfAbsent(cacheKey, toCache); if (fromCache != null) { // another thread beat us so we'll use the cached value instead
toCache.unsubscribe(); isResponseFromCache = true; return handleRequestCacheHitAndEmitValues(fromCache, _cmd); } else { // we just created an ObservableCommand so we cast and return it
afterCache = toCache.toObservable(); } } else { afterCache = hystrixObservable; } return afterCache //会在Observable结束前触发回调,无论是正常还是异常终止
.doOnTerminate(terminateCommandCleanup) // perform cleanup once (either on normal terminal state (this line), or unsubscribe (next line)) //取消订阅时的监听
.doOnUnsubscribe(unsubscribeCommandCleanup) // perform cleanup once //Observable正常终止时的监听
.doOnCompleted(fireOnCompletedHook); } }); }
所以在 AbstractCommand#toObservable 方法里,我们只需要看这个返回的 Observable 对象的 call 方法即可,而在这里 默认没有开启缓存的话就是 :
Observable<R> hystrixObservable = Observable.defer(applyHystrixSemantics) .map(wrapWithAllOnNextHooks);
那么我们主要来看 applyHystrixSemantics ,在该方法上面定义了
final Func0<Observable<R>> applyHystrixSemantics = new Func0<Observable<R>>() { @Override public Observable<R> call() { if (commandState.get().equals(CommandState.UNSUBSCRIBED)) { return Observable.never(); } return applyHystrixSemantics(_cmd); } };
假设缓存特性未开启或者未命中缓存,那么代码将执行 applyHystrixSemantics 。传入的_cmd是一个GenericCommand(可以断点看看),最终执行这个command中的run方法,本质就是完成对queryOrder方法的代理。
circuitBreaker.allowRequest() 如果为true,表示当前不处于熔断状态,正常执行,否则,调用 handleShortCircuitViaFallback 实现服务降级,如果我们配置了fallback方法,则会获得我们配置的fallback执行。执行路径为 : handleShortCircuitViaFallback ->getFallbackOrThrowException ->getFallbackObservable->HystrixCommand.getFallbackObservable->GenericCommand.getFallback();
如果当前hystrix处于未熔断状态,则
- getExecutionSemaphore 判断当前策略是否为信号量(TryableSemaphoreNoOp/TryableSemaphoreActual),如果是,则调用 tryAcquire 来获取信号量。如果当前信号量满了,则调用 handleSemaphoreRejectionViaFallback 方法。
- 调用 executeCommandAndObserve 获取命令执行Observable。
private Observable<R> applyHystrixSemantics(final AbstractCommand<R> _cmd) { // mark that we're starting execution on the ExecutionHook // if this hook throws an exception, then a fast-fail occurs with no fallback. No state is left inconsistent
executionHook.onStart(_cmd); /* determine if we're allowed to execute */
// 判断是否处于熔断状态
if (circuitBreaker.allowRequest()) { final TryableSemaphore executionSemaphore = getExecutionSemaphore(); final AtomicBoolean semaphoreHasBeenReleased = new AtomicBoolean(false); final Action0 singleSemaphoreRelease = new Action0() {//操作命令
@Override public void call() { if (semaphoreHasBeenReleased.compareAndSet(false, true)) { executionSemaphore.release(); } } }; final Action1<Throwable> markExceptionThrown = new Action1<Throwable>() { @Override public void call(Throwable t) { eventNotifier.markEvent(HystrixEventType.EXCEPTION_THROWN, commandKey); } }; // 是否开启信号量资源隔离,未配置走 com.netflix.hystrix.AbstractCommand.TryableSemaphoreNoOp#tryAcquire 默认返回通过
if (executionSemaphore.tryAcquire()) { try { /* used to track userThreadExecutionTime */ executionResult = executionResult.setInvocationStartTime(System.currentTimeMillis()); return executeCommandAndObserve(_cmd) // 执行命令,以下三个是回调,可以不看
.doOnError(markExceptionThrown) .doOnTerminate(singleSemaphoreRelease) .doOnUnsubscribe(singleSemaphoreRelease); } catch (RuntimeException e) { return Observable.error(e); } } else { // 走服务降级方法
return handleSemaphoreRejectionViaFallback(); } } else { return handleShortCircuitViaFallback(); } }
我们县来看一下执行失败进入降级的逻辑,这里我们直接进入到 HystrixCommand#getFallbackObservable
@Override final protected Observable<R> getFallbackObservable() { return Observable.defer(new Func0<Observable<R>>() { @Override public Observable<R> call() { try { return Observable.just(getFallback()); } catch (Throwable ex) { return Observable.error(ex); } } }); }
这里的 getFallback 我们应该熟悉了,因为通过集成 HystrixCommand 类来实现熔断降级的时候我们重写了这个方法,而通过注解的话是通过 GenericCommand进行代理实现得,我们Debug一下,看看该类的 getFallback 方法做了什么:
可以发现他拿到了我们配置在注解上的方法,这一点是不是跟上文的手写是一个道理呢? 然后进行调用获取结果返回。
好了,回到 AbstractCommand#applyHystrixSemantics ,接下去我们按照正常逻辑走到 AbstractCommand#executeCommandAndObserve,主要做了以下三件事情
- 定义不同的回调,doOnNext、doOnCompleted、onErrorResumeNext、doOnEach。
- 调用executeCommandWithSpecifiedIsolation获得执行命令的Observable
- 若执行命令超时特性开启,调用 Observable.lift 方法实现执行命令超时功能。
private Observable<R> executeCommandAndObserve(final AbstractCommand<R> _cmd) { final HystrixRequestContext currentRequestContext = HystrixRequestContext.getContextForCurrentThread(); // Action和Func都是定义的一个动作,Action是无返回值,Func是有返回值 // doOnNext中的回调。即命令执行之前执行的操作
final Action1<R> markEmits = new Action1<R>() { @Override public void call(R r) { if (shouldOutputOnNextEvents()) { executionResult = executionResult.addEvent(HystrixEventType.EMIT); eventNotifier.markEvent(HystrixEventType.EMIT, commandKey); } if (commandIsScalar()) { long latency = System.currentTimeMillis() - executionResult.getStartTimestamp(); eventNotifier.markCommandExecution(getCommandKey(), properties.executionIsolationStrategy().get(), (int) latency, executionResult.getOrderedList()); eventNotifier.markEvent(HystrixEventType.SUCCESS, commandKey); executionResult = executionResult.addEvent((int) latency, HystrixEventType.SUCCESS); circuitBreaker.markSuccess(); } } }; // doOnCompleted中的回调。命令执行完毕后执行的操作
final Action0 markOnCompleted = new Action0() { @Override public void call() { if (!commandIsScalar()) { long latency = System.currentTimeMillis() - executionResult.getStartTimestamp(); eventNotifier.markCommandExecution(getCommandKey(), properties.executionIsolationStrategy().get(), (int) latency, executionResult.getOrderedList()); eventNotifier.markEvent(HystrixEventType.SUCCESS, commandKey); executionResult = executionResult.addEvent((int) latency, HystrixEventType.SUCCESS); circuitBreaker.markSuccess(); } } }; // onErrorResumeNext中的回调。命令执行失败后的回退逻辑
final Func1<Throwable, Observable<R>> handleFallback = new Func1<Throwable, Observable<R>>() { @Override public Observable<R> call(Throwable t) { Exception e = getExceptionFromThrowable(t); executionResult = executionResult.setExecutionException(e); if (e instanceof RejectedExecutionException) { return handleThreadPoolRejectionViaFallback(e); } else if (t instanceof HystrixTimeoutException) { return handleTimeoutViaFallback(); } else if (t instanceof HystrixBadRequestException) { return handleBadRequestByEmittingError(e); } else { /* * Treat HystrixBadRequestException from ExecutionHook like a plain HystrixBadRequestException. */
if (e instanceof HystrixBadRequestException) { eventNotifier.markEvent(HystrixEventType.BAD_REQUEST, commandKey); return Observable.error(e); } return handleFailureViaFallback(e); } } }; // doOnEach中的回调。`Observable`每发射一个数据都会执行这个回调,设置请求上下文
final Action1<Notification<? super R>> setRequestContext = new Action1<Notification<? super R>>() { @Override public void call(Notification<? super R> rNotification) { setRequestContextIfNeeded(currentRequestContext); } }; Observable<R> execution; // 是否开启超时降级
if (properties.executionTimeoutEnabled().get()) { execution = executeCommandWithSpecifiedIsolation(_cmd) .lift(new HystrixObservableTimeoutOperator<R>(_cmd)); } else { execution = executeCommandWithSpecifiedIsolation(_cmd); } // 发射
return execution.doOnNext(markEmits) .doOnCompleted(markOnCompleted) .onErrorResumeNext(handleFallback) .doOnEach(setRequestContext); }
executeCommandWithSpecifiedIsolation:这个方法首先是根据当前不同的资源隔离策略执行不同的逻辑,THREAD、SEMAPHORE:
private Observable<R> executeCommandWithSpecifiedIsolation(final AbstractCommand<R> _cmd) { // 是否开启 THREAD 资源隔离降级
if (properties.executionIsolationStrategy().get() == ExecutionIsolationStrategy.THREAD) { // ......省略代码 } else { // 否则进入这里
return Observable.defer(new Func0<Observable<R>>() { @Override public Observable<R> call() { executionResult = executionResult.setExecutionOccurred(); if (!commandState.compareAndSet(CommandState.OBSERVABLE_CHAIN_CREATED, CommandState.USER_CODE_EXECUTED)) { return Observable.error(new IllegalStateException("execution attempted while in state : " + commandState.get().name())); } metrics.markCommandStart(commandKey, threadPoolKey, ExecutionIsolationStrategy.SEMAPHORE); // semaphore isolated // store the command that is being run
endCurrentThreadExecutingCommand = Hystrix.startCurrentThreadExecutingCommand(getCommandKey()); try { executionHook.onRunStart(_cmd); executionHook.onExecutionStart(_cmd); // 真正的执行
return getUserExecutionObservable(_cmd); //the getUserExecutionObservable method already wraps sync exceptions, so this shouldn't throw
} catch (Throwable ex) { //If the above hooks throw, then use that as the result of the run method
return Observable.error(ex); } } }); } }
这里就不展开实现细节,我们直接看执行的方法 getUserExecutionObservable 。然后会执行 HystrixCommand#getExecutionObservable
@Override final protected Observable<R> getExecutionObservable() { return Observable.defer(new Func0<Observable<R>>() { @Override public Observable<R> call() { try { return Observable.just(run()); } catch (Throwable ex) { return Observable.error(ex); } } }).doOnSubscribe(new Action0() { @Override public void call() { // Save thread on which we get subscribed so that we can interrupt it later if needed
executionThread.set(Thread.currentThread()); } }); }
又看到熟悉的代码 ,这个 run() 方法在通过集成 HystrixCommand 类来实现熔断降级的时候我们重写了这个方法,是真正的执行方法。
这里最终调用的是run方法,通过Observable.just, just是RxJava中的一个操作符,它可以接受一个或者多个参数来创建一个Observable对象。而这个run()方法是一个抽象方法,在HystrixCommand中并没有实现,而是在子类中实现,而此时传递的cmd=GenricCommand正好实现了HystrixCommand,重写了run方法。
@Override protected Object run() throws Exception { LOGGER.debug("execute command: {}", getCommandKey().name()); return process(new Action() { @Override Object execute() { return getCommandAction().execute(getExecutionType()); } }); }
大家有没有发现,这里的实现和我们前面自定义的 HystrixCommandService 实现是一样的,同样是集成HystrixCommand,重写run方法。这里也是如此。
- 首先调用 getCommandAction() 方法获取 CommandAction ,我们的示例中获取到的是MethodExecutionAction 。
- 然后调用 MethodExecutionAction.execute 方法,传入 ExecutionType 参数,我们的示例中传入的是 ExecutionType.SYNCHRONOUS 。
拿到我们的真实方法进行调用返回。下面附上整个过程的流程图: