struct rte_mbuf


buf_addr

当前mbuf的虚拟地址,标准buf addr的指向的内存是在mbuf头部开始,偏移一个mbuf头加上一个私有数据的大小。如下所示:
m->buf_addr = (char *)m + sizeof(struct rte_mbuf) + priv_size;
初始化这个变量是在我们创建mbuf的mempool的时候完成的

rte_pktmbuf_pool_create
    rte_mempool_obj_iter(mp, rte_pktmbuf_init, NULL);
        rte_pktmbuf_init
                m->buf_addr = (char *)m + mbuf_size;

 

buf的物理地址
union {
rte_iova_t buf_iova;
rte_iova_t buf_physaddr; /**< deprecated */
} __rte_aligned(sizeof(rte_iova_t));

mbuf对应的物理地址,一般mbuf物理地址在初始化mempool的时候就设置了,在mbuf对应obj的head里面存放,如下结构体的objhdr里面的iova/physaddr

struct rte_mempool_objhdr {
STAILQ_ENTRY(rte_mempool_objhdr) next; /**< Next in list. */
struct rte_mempool *mp; /**< The mempool owning the object. */
RTE_STD_C11
union {
rte_iova_t iova; /**< IO address of the object. */
phys_addr_t physaddr; /**< deprecated - Physical address of the object. */
};
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
uint64_t cookie; /**< Debug cookie. */
#endif
};

 



这个转化关系如下:
m->buf_iova = rte_mempool_virt2iova(m) + sizeof(struct rte_mbuf) + priv_size;

 

这里写图片描述
mbuf结构体中的pkt的next字段记录下一个segment的地址
m的pkt总长度是seg1+seg2+seg3三段数据之和。

 

data_off

这个变量是标识mbuf的data room开始地址到报文起始位置的偏移,默认是设置为RTE_PKTMBUF_HEADROOM(128),
我们在创建一个mbuf的mem pool的时候,会指定data room的大小,如下所示的data_room_size参数,

struct rte_mempool *
rte_pktmbuf_pool_create(const char *name, unsigned int n,
    unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
    int socket_id)
{
    return rte_pktmbuf_pool_create_by_ops(name, n, cache_size, priv_size,
            data_room_size, socket_id, NULL);
}

 

data_room_size标识每一个mbuf的数据报文的最大值,一般会设置大于一个mtu+128B的头部预留空间
dpdk提供一个默认宏定义:

#define RTE_PKTMBUF_HEADROOM 128
#define RTE_MBUF_DEFAULT_DATAROOM 2048
#define RTE_MBUF_DEFAULT_BUF_SIZE (RTE_MBUF_DEFAULT_DATAROOM + RTE_PKTMBUF_HEADROOM)

所以当我们从mbuf pool alloc一块mbuf过来的时候,都会reset一下mbuf的变量,里面就包含了重置data_off,具体如下:

static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m)
{
m->data_off = (uint16_t)RTE_MIN((uint16_t)RTE_PKTMBUF_HEADROOM,
(uint16_t)m->buf_len);
}
static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
{
m->next = NULL;
m->pkt_len = 0;
m->tx_offload = 0;
m->vlan_tci = 0;
m->vlan_tci_outer = 0;
m->nb_segs = 1;
m->port = MBUF_INVALID_PORT;

m->ol_flags = 0;
m->packet_type = 0;
rte_pktmbuf_reset_headroom(m);
 m->data_len = 0;
__rte_mbuf_sanity_check(m, 1);
}

 

static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m)
{
        m->data_off = (uint16_t)RTE_MIN((uint16_t)RTE_PKTMBUF_HEADROOM,
                                        (uint16_t)m->buf_len);
}

 

 

 

 

 

 

 

 

 

/**
 * A macro that points to an offset into the data in the mbuf.
 *
 * The returned pointer is cast to type t. Before using this
 * function, the user must ensure that the first segment is large
 * enough to accommodate its data.
 *
 * @param m
 *   The packet mbuf.
 * @param o
 *   The offset into the mbuf data.
 * @param t
 *   The type to cast the result into.
 */
#define rte_pktmbuf_mtod_offset(m, t, o)        \
        ((t)((char *)(m)->buf_addr + (m)->data_off + (o)))

/**
 * A macro that points to the start of the data in the mbuf.
 *
 * The returned pointer is cast to type t. Before using this
 * function, the user must ensure that the first segment is large
 * enough to accommodate its data.
 *
 * @param m
 *   The packet mbuf.
 * @param t
 *   The type to cast the result into.
 */
#define rte_pktmbuf_mtod(m, t) rte_pktmbuf_mtod_offset(m, t, 0)

 

#define rte_pktmbuf_data_len(m) ((m)->data_len)

 

1、不需要分片

 

 

IP报头跟四层报文都需要长度是4的倍数;TCP报文头部中固定长度是20字节
   TCP头部选项:TCP头部的最后一个选项字段(options)是可变长的可选信息。这部分最多包含40字节,因为TCP头部最长是60字节(其中还包含前面讨论的20字节的固定部分)。
    4位头部长度(header length):标识该TCP头部有多少个32bit字(4字节)。因为4位最大能标识15,所以TCP头部最长是60字节。 int ipv4_hdrlen = (iph->version_ihl & RTE_IPV4_HDR_IHL_MASK) << 2;
pkt_len = ntcp_payload_len + ipv4_hdrlen + (tcph->data_off >> 4) * 4;
rte_pktmbuf_data_len(mbuf) = rte_pktmbuf_pkt_len(mbuf) =
                            pkt_len + RTE_ETHER_HDR_LEN;

 

 

Mbuf

概述

DPDK mbuf实现了message buffer,可以存储报文数据或者控制信息等。mbuf存储在mempool中,以便在数据面提高访问性能。

原理

DPDK把元数据(metadata)和实际数据存储在一个mbuf中,并且使mbuf结构体尽量小,目前仅占用2个cache line,且最常访问的成员在第1个cache line中。

mbuf从前至后主要由mbuf首部(即rte_mbuf结构体)、head room、实际数据和tailroom构成。用户还可以在mbuf首部和head room之前加入一定长度的私有数据(private data)。head room的大小在DPDK编译配置文件(如common_linuxapp)中指定,如 CONFIG_RTE_PKTMBUF_HEADROOM=128 。mbuf的基本结构如下图所示:

../../_images/mbuf_single.png

一些指针、成员或函数结果的内容在下表中列出,mbuf指针简写为m:

内容
m 首部,即mbuf结构体
m->buf_addr headroom起始地址
m->data_off data起始地址相对于buf_addr的偏移
m->buf_len mbuf和priv之后内存的长度,包含headroom
m->pkt_len 整个mbuf链的data总长度
m->data_len 实际data的长度
m->buf_addr+m->data_off 实际data的起始地址
rte_pktmbuf_mtod(m) 同上
rte_pktmbuf_data_len(m) 同m->data_len
rte_pktmbuf_pkt_len 同m->pkt_len
rte_pktmbuf_data_room_size 同m->buf_len
rte_pktmbuf_headroom headroom长度
rte_pktmbuf_tailroom 尾部剩余空间长度
注:data_off = MIN(headroom_len, buf_len)

上图中的buf只有一个数据段,在某些情况下,比如要处理巨帧(jumbo frame)时,可以把多个mbuf链接起来组成一个mbuf。下图是包含3个数据段的mbuf:

../../_images/mbuf_multi.png

对于链式的mbuf,仅在第一个mbuf结构体中包含元数据信息。

以下代码分别创建了两个mbuf,给它们添加数据,最后将它们组合成链。在此过程中打印了上表中的一些数据,可以帮助理解各指针和长度的含义,其中省去了错误处理代码。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
static int mbuf_demo(void) { int ret; struct rte_mempool* mpool; struct rte_mbuf *m, *m2; struct rte_pktmbuf_pool_private priv;  priv.mbuf_data_room_size = 1600 + RTE_PKTMBUF_HEADROOM - 16;  priv.mbuf_priv_size = 16; mpool = rte_mempool_create("test_pool", ITEM_COUNT, ITEM_SIZE, CACHE_SIZE, sizeof(struct rte_pktmbuf_pool_private), rte_pktmbuf_pool_init,  &priv, rte_pktmbuf_init, NULL, 0, MEMPOOL_F_SC_GET); m = rte_pktmbuf_alloc(mpool);  mbuf_dump(m); // (1) rte_pktmbuf_append(m, 1400);  mbuf_dump(m); // (2) m2 = rte_pktmbuf_alloc(mpool); rte_pktmbuf_append(m2, 500); mbuf_dump(m2); ret = rte_pktmbuf_chain(m, m2);  mbuf_dump(m); // (3) return 0; } 

首先注意第8,9,16行,为了演示用户私有数据,在创建mempool时传入了priv,这将在每个mbuf的首部后面添加16字节的私有数据,然后才是head room。内存池对象数目、第个对象的大小和cache大小分别是:

#define ITEM_COUNT 1024
#define ITEM_SIZE (1600 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM) #define CACHE_SIZE 32 

1600是预估的一个packet的最大长度。

在(1)处,新分配了一个mbuf m,此时m的data长度为0,打印结果如下:

RTE_PKTMBUF_HEADROOM: 128
sizeof(mbuf): 128
m: 0x7fbf1a810000
m->buf_addr: 0x7fbf1a810090
m->data_off: 128
m->buf_len: 1712
m->pkt_len: 0
m->data_len: 0
m->buf_addr+m->data_off: 0x7fbf1a810110
rte_pktmbuf_mtod(m): 0x7fbf1a810110
rte_pktmbuf_data_len(m): 0
rte_pktmbuf_pkt_len(m): 0
rte_pktmbuf_headroom(m): 128
rte_pktmbuf_tailroom(m): 1584
rte_pktmbuf_data_room_size(mpool): 1712
rte_pktmbuf_priv_size(mpool): 16

用图表示如下:

../../_images/mbuf_layout1.png

在(2),用rte_pktmbuf_append模拟给m填充了1400字节的data,此时打印结果如下:

m: 0x7fbf1a810000
m->buf_addr: 0x7fbf1a810090
m->data_off: 128
m->buf_len: 1712
m->pkt_len: 1400
m->data_len: 1400
m->buf_addr+m->data_off: 0x7fbf1a810110
rte_pktmbuf_mtod(m): 0x7fbf1a810110
rte_pktmbuf_data_len(m): 1400
rte_pktmbuf_pkt_len(m): 1400
rte_pktmbuf_headroom(m): 128
rte_pktmbuf_tailroom(m): 184
rte_pktmbuf_data_room_size(mpool): 1712
rte_pktmbuf_priv_size(mpool): 16

用图表示如下:

../../_images/mbuf_layout2.png

之后创建m2并给它添加data,在(3)处将m与m2连接,m做为链的首节点,此时m的打印结果如下:

m: 0x7fbf1a810000
m->buf_addr: 0x7fbf1a810090
m->data_off: 128
m->buf_len: 1712
m->pkt_len: 1900
m->data_len: 1400
m->buf_addr+m->data_off: 0x7fbf1a810110
rte_pktmbuf_mtod(m): 0x7fbf1a810110
rte_pktmbuf_data_len(m): 1400
rte_pktmbuf_pkt_len(m): 1900
rte_pktmbuf_headroom(m): 128
rte_pktmbuf_tailroom(m): 184
rte_pktmbuf_data_room_size(mpool): 1712
rte_pktmbuf_priv_size(mpool): 16

注意pkt_len的变化,它已经加上了m2的500字节。如果此时打印m—>next, 会发现m->next == m2。

数据结构

rte_mbuf(librte_mbuf/rte_mbuf.h):

struct rte_mbuf { MARKER cacheline0; void *buf_addr; /**< Virtual address of segment buffer. */ phys_addr_t buf_physaddr; /**< Physical address of segment buffer. */ uint16_t buf_len; /**< Length of segment buffer. */ /* next 6 bytes are initialised on RX descriptor rearm */ MARKER8 rearm_data; uint16_t data_off; /**  * 16-bit Reference counter.  * It should only be accessed using the following functions:  * rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and  * rte_mbuf_refcnt_set(). The functionality of these functions (atomic,  * or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC  * config option.  */ union { rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */ uint16_t refcnt; /**< Non-atomically accessed refcnt */ }; uint8_t nb_segs; /**< Number of segments. */ uint8_t port; /**< Input port. */ uint64_t ol_flags; /**< Offload features. */ /* remaining bytes are set on RX when pulling packet from descriptor */ MARKER rx_descriptor_fields1; /*  * The packet type, which is the combination of outer/inner L2, L3, L4  * and tunnel types.  */ union { uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */ struct { uint32_t l2_type:4; /**< (Outer) L2 type. */ uint32_t l3_type:4; /**< (Outer) L3 type. */ uint32_t l4_type:4; /**< (Outer) L4 type. */ uint32_t tun_type:4; /**< Tunnel type. */ uint32_t inner_l2_type:4; /**< Inner L2 type. */ uint32_t inner_l3_type:4; /**< Inner L3 type. */ uint32_t inner_l4_type:4; /**< Inner L4 type. */ }; }; uint32_t pkt_len; /**< Total pkt len: sum of all segments. */ uint16_t data_len; /**< Amount of data in segment buffer. */ uint16_t vlan_tci; /**< VLAN Tag Control Identifier (CPU order) */ union { uint32_t rss; /**< RSS hash result if RSS enabled */ struct { union { struct { uint16_t hash; uint16_t id; }; uint32_t lo; /**< Second 4 flexible bytes */ }; uint32_t hi; /**< First 4 flexible bytes or FD ID, dependent on  PKT_RX_FDIR_* flag in ol_flags. */ } fdir; /**< Filter identifier if FDIR enabled */ struct { uint32_t lo; uint32_t hi; } sched; /**< Hierarchical scheduler */ uint32_t usr; /**< User defined tags. See rte_distributor_process() */ } hash; /**< hash information */ uint32_t seqn; /**< Sequence number. See also rte_reorder_insert() */ uint16_t vlan_tci_outer; /**< Outer VLAN Tag Control Identifier (CPU order) */ /* second cache line - fields only used in slow path or on TX */ MARKER cacheline1 __rte_cache_aligned; union { void *userdata; /**< Can be used for external metadata */ uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */ }; struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */ struct rte_mbuf *next; /**< Next segment of scattered packet. */ /* fields to support TX offloads */ union { uint64_t tx_offload; /**< combined for easy fetch */ struct { uint64_t l2_len:7; /**< L2 (MAC) Header Length. */ uint64_t l3_len:9; /**< L3 (IP) Header Length. */ uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */ uint64_t tso_segsz:16; /**< TCP TSO segment size */ /* fields for TX offloading of tunnels */ uint64_t outer_l3_len:9; /**< Outer L3 (IP) Hdr Length. */ uint64_t outer_l2_len:7; /**< Outer L2 (MAC) Hdr Length. */ /* uint64_t unused:8; */ }; }; /** Size of the application private data. In case of an indirect  * mbuf, it stores the direct mbuf private data size. */ uint16_t priv_size; /** Timesync flags for use with IEEE1588. */ uint16_t timesync; /* Chain of off-load operations to perform on mbuf */ struct rte_mbuf_offload *offload_ops; } 

分配与回收

初始化

mbuf存放在mempool中,在创建mempool时,如果指定了对象初始化回调函数,如上面例子中的rte_pktmbuf_init(),将会对其中每个mbuf调用此函数进行初始化,为某些成员赋值。

分配

调用rte_mempool_get()从mempool中获取一个mbuf,并将其引用计数置1。

回收

对于direct mbuf,直接调用rte_mempool_put()进行放回mempool;对于indirect mbuf,需要先detach,然后再free它所attach的实际mbuf。

回收mbuf时,会回收mbuf链上的所有mbuf节点。

元信息

见 Meta Information 。似乎 Rx端网卡并不能填充l2_type, l3_type等信息。

Direct和Indirect mbuf

上面描述的mbuf,由mbuf结构体首部、headroom和data等部分组成,实际持有数据,这样的mbuf称为direct mbuf。但在某些时候,比如需要复制或分片报文时,可能会用到另一种mbuf,它并不真正的持有数据,而是引用direct mbuf的数据,类似于对象的浅拷贝,这种mbuf称为indirect mbuf。

可以通过attach操作生成一个indirect mbuf。每个mbuf都有一个引用计数,当direct mbuf被attach时,它的引用计数+1;当被deattch时,引用计数-1。当引用计数为0时,意味着direct mbuf没人使用,可以被释放了。

indirect mbuf机制有一些限制条件:

  • 不能attach一个indirect mbuf
  • attach之前,mbuf的引用计数必须是1,也就是说,它没有被其他mbuf引用过
  • 不能把indirect mbuf再次attach到一个direct mbuf,除非先deattch

虽然可以直接调用attach/detach操作,但推荐使用clone操作来浅拷贝mbuf,因为clone会正确处理链式mbuf

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM