buf_addr
当前mbuf的虚拟地址,标准buf addr的指向的内存是在mbuf头部开始,偏移一个mbuf头加上一个私有数据的大小。如下所示:
m->buf_addr = (char *)m + sizeof(struct rte_mbuf) + priv_size;
初始化这个变量是在我们创建mbuf的mempool的时候完成的
rte_pktmbuf_pool_create rte_mempool_obj_iter(mp, rte_pktmbuf_init, NULL); rte_pktmbuf_init m->buf_addr = (char *)m + mbuf_size;
buf的物理地址
union {
rte_iova_t buf_iova;
rte_iova_t buf_physaddr; /**< deprecated */
} __rte_aligned(sizeof(rte_iova_t));
mbuf对应的物理地址,一般mbuf物理地址在初始化mempool的时候就设置了,在mbuf对应obj的head里面存放,如下结构体的objhdr里面的iova/physaddr
struct rte_mempool_objhdr { STAILQ_ENTRY(rte_mempool_objhdr) next; /**< Next in list. */ struct rte_mempool *mp; /**< The mempool owning the object. */ RTE_STD_C11 union { rte_iova_t iova; /**< IO address of the object. */ phys_addr_t physaddr; /**< deprecated - Physical address of the object. */ }; #ifdef RTE_LIBRTE_MEMPOOL_DEBUG uint64_t cookie; /**< Debug cookie. */ #endif };
这个转化关系如下:
m->buf_iova = rte_mempool_virt2iova(m) + sizeof(struct rte_mbuf) + priv_size;
mbuf结构体中的pkt的next字段记录下一个segment的地址
m的pkt总长度是seg1+seg2+seg3三段数据之和。
data_off
这个变量是标识mbuf的data room开始地址到报文起始位置的偏移,默认是设置为RTE_PKTMBUF_HEADROOM(128),
我们在创建一个mbuf的mem pool的时候,会指定data room的大小,如下所示的data_room_size参数,
struct rte_mempool * rte_pktmbuf_pool_create(const char *name, unsigned int n, unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id) { return rte_pktmbuf_pool_create_by_ops(name, n, cache_size, priv_size, data_room_size, socket_id, NULL); }
data_room_size标识每一个mbuf的数据报文的最大值,一般会设置大于一个mtu+128B的头部预留空间
dpdk提供一个默认宏定义:
#define RTE_PKTMBUF_HEADROOM 128
#define RTE_MBUF_DEFAULT_DATAROOM 2048
#define RTE_MBUF_DEFAULT_BUF_SIZE (RTE_MBUF_DEFAULT_DATAROOM + RTE_PKTMBUF_HEADROOM)
所以当我们从mbuf pool alloc一块mbuf过来的时候,都会reset一下mbuf的变量,里面就包含了重置data_off,具体如下:
static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m) { m->data_off = (uint16_t)RTE_MIN((uint16_t)RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len); } static inline void rte_pktmbuf_reset(struct rte_mbuf *m) { m->next = NULL; m->pkt_len = 0; m->tx_offload = 0; m->vlan_tci = 0; m->vlan_tci_outer = 0; m->nb_segs = 1; m->port = MBUF_INVALID_PORT; m->ol_flags = 0; m->packet_type = 0; rte_pktmbuf_reset_headroom(m); m->data_len = 0; __rte_mbuf_sanity_check(m, 1); }
static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m) { m->data_off = (uint16_t)RTE_MIN((uint16_t)RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len); }
/** * A macro that points to an offset into the data in the mbuf. * * The returned pointer is cast to type t. Before using this * function, the user must ensure that the first segment is large * enough to accommodate its data. * * @param m * The packet mbuf. * @param o * The offset into the mbuf data. * @param t * The type to cast the result into. */ #define rte_pktmbuf_mtod_offset(m, t, o) \ ((t)((char *)(m)->buf_addr + (m)->data_off + (o))) /** * A macro that points to the start of the data in the mbuf. * * The returned pointer is cast to type t. Before using this * function, the user must ensure that the first segment is large * enough to accommodate its data. * * @param m * The packet mbuf. * @param t * The type to cast the result into. */ #define rte_pktmbuf_mtod(m, t) rte_pktmbuf_mtod_offset(m, t, 0)
#define rte_pktmbuf_data_len(m) ((m)->data_len)
1、不需要分片
IP报头跟四层报文都需要长度是4的倍数;TCP报文头部中固定长度是20字节 TCP头部选项:TCP头部的最后一个选项字段(options)是可变长的可选信息。这部分最多包含40字节,因为TCP头部最长是60字节(其中还包含前面讨论的20字节的固定部分)。 4位头部长度(header length):标识该TCP头部有多少个32bit字(4字节)。因为4位最大能标识15,所以TCP头部最长是60字节。 int ipv4_hdrlen = (iph->version_ihl & RTE_IPV4_HDR_IHL_MASK) << 2; pkt_len = ntcp_payload_len + ipv4_hdrlen + (tcph->data_off >> 4) * 4; rte_pktmbuf_data_len(mbuf) = rte_pktmbuf_pkt_len(mbuf) = pkt_len + RTE_ETHER_HDR_LEN;
Mbuf
概述
DPDK mbuf实现了message buffer,可以存储报文数据或者控制信息等。mbuf存储在mempool中,以便在数据面提高访问性能。
原理
DPDK把元数据(metadata)和实际数据存储在一个mbuf中,并且使mbuf结构体尽量小,目前仅占用2个cache line,且最常访问的成员在第1个cache line中。
mbuf从前至后主要由mbuf首部(即rte_mbuf结构体)、head room、实际数据和tailroom构成。用户还可以在mbuf首部和head room之前加入一定长度的私有数据(private data)。head room的大小在DPDK编译配置文件(如common_linuxapp)中指定,如 CONFIG_RTE_PKTMBUF_HEADROOM=128
。mbuf的基本结构如下图所示:

一些指针、成员或函数结果的内容在下表中列出,mbuf指针简写为m:
项 | 内容 |
---|---|
m | 首部,即mbuf结构体 |
m->buf_addr | headroom起始地址 |
m->data_off | data起始地址相对于buf_addr的偏移 |
m->buf_len | mbuf和priv之后内存的长度,包含headroom |
m->pkt_len | 整个mbuf链的data总长度 |
m->data_len | 实际data的长度 |
m->buf_addr+m->data_off | 实际data的起始地址 |
rte_pktmbuf_mtod(m) | 同上 |
rte_pktmbuf_data_len(m) | 同m->data_len |
rte_pktmbuf_pkt_len | 同m->pkt_len |
rte_pktmbuf_data_room_size | 同m->buf_len |
rte_pktmbuf_headroom | headroom长度 |
rte_pktmbuf_tailroom | 尾部剩余空间长度 |
注:data_off = MIN(headroom_len, buf_len)
上图中的buf只有一个数据段,在某些情况下,比如要处理巨帧(jumbo frame)时,可以把多个mbuf链接起来组成一个mbuf。下图是包含3个数据段的mbuf:

对于链式的mbuf,仅在第一个mbuf结构体中包含元数据信息。
以下代码分别创建了两个mbuf,给它们添加数据,最后将它们组合成链。在此过程中打印了上表中的一些数据,可以帮助理解各指针和长度的含义,其中省去了错误处理代码。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
static int mbuf_demo(void) { int ret; struct rte_mempool* mpool; struct rte_mbuf *m, *m2; struct rte_pktmbuf_pool_private priv; priv.mbuf_data_room_size = 1600 + RTE_PKTMBUF_HEADROOM - 16; priv.mbuf_priv_size = 16; mpool = rte_mempool_create("test_pool", ITEM_COUNT, ITEM_SIZE, CACHE_SIZE, sizeof(struct rte_pktmbuf_pool_private), rte_pktmbuf_pool_init, &priv, rte_pktmbuf_init, NULL, 0, MEMPOOL_F_SC_GET); m = rte_pktmbuf_alloc(mpool); mbuf_dump(m); // (1) rte_pktmbuf_append(m, 1400); mbuf_dump(m); // (2) m2 = rte_pktmbuf_alloc(mpool); rte_pktmbuf_append(m2, 500); mbuf_dump(m2); ret = rte_pktmbuf_chain(m, m2); mbuf_dump(m); // (3) return 0; }
|
首先注意第8,9,16行,为了演示用户私有数据,在创建mempool时传入了priv,这将在每个mbuf的首部后面添加16字节的私有数据,然后才是head room。内存池对象数目、第个对象的大小和cache大小分别是:
#define ITEM_COUNT 1024
#define ITEM_SIZE (1600 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM) #define CACHE_SIZE 32
1600是预估的一个packet的最大长度。
在(1)处,新分配了一个mbuf m,此时m的data长度为0,打印结果如下:
RTE_PKTMBUF_HEADROOM: 128
sizeof(mbuf): 128
m: 0x7fbf1a810000
m->buf_addr: 0x7fbf1a810090
m->data_off: 128
m->buf_len: 1712
m->pkt_len: 0
m->data_len: 0
m->buf_addr+m->data_off: 0x7fbf1a810110
rte_pktmbuf_mtod(m): 0x7fbf1a810110
rte_pktmbuf_data_len(m): 0
rte_pktmbuf_pkt_len(m): 0
rte_pktmbuf_headroom(m): 128
rte_pktmbuf_tailroom(m): 1584
rte_pktmbuf_data_room_size(mpool): 1712
rte_pktmbuf_priv_size(mpool): 16
用图表示如下:

在(2),用rte_pktmbuf_append模拟给m填充了1400字节的data,此时打印结果如下:
m: 0x7fbf1a810000
m->buf_addr: 0x7fbf1a810090
m->data_off: 128
m->buf_len: 1712
m->pkt_len: 1400
m->data_len: 1400
m->buf_addr+m->data_off: 0x7fbf1a810110
rte_pktmbuf_mtod(m): 0x7fbf1a810110
rte_pktmbuf_data_len(m): 1400
rte_pktmbuf_pkt_len(m): 1400
rte_pktmbuf_headroom(m): 128
rte_pktmbuf_tailroom(m): 184
rte_pktmbuf_data_room_size(mpool): 1712
rte_pktmbuf_priv_size(mpool): 16
用图表示如下:

之后创建m2并给它添加data,在(3)处将m与m2连接,m做为链的首节点,此时m的打印结果如下:
m: 0x7fbf1a810000
m->buf_addr: 0x7fbf1a810090
m->data_off: 128
m->buf_len: 1712
m->pkt_len: 1900
m->data_len: 1400
m->buf_addr+m->data_off: 0x7fbf1a810110
rte_pktmbuf_mtod(m): 0x7fbf1a810110
rte_pktmbuf_data_len(m): 1400
rte_pktmbuf_pkt_len(m): 1900
rte_pktmbuf_headroom(m): 128
rte_pktmbuf_tailroom(m): 184
rte_pktmbuf_data_room_size(mpool): 1712
rte_pktmbuf_priv_size(mpool): 16
注意pkt_len的变化,它已经加上了m2的500字节。如果此时打印m—>next, 会发现m->next == m2。
数据结构
rte_mbuf(librte_mbuf/rte_mbuf.h):
struct rte_mbuf { MARKER cacheline0; void *buf_addr; /**< Virtual address of segment buffer. */ phys_addr_t buf_physaddr; /**< Physical address of segment buffer. */ uint16_t buf_len; /**< Length of segment buffer. */ /* next 6 bytes are initialised on RX descriptor rearm */ MARKER8 rearm_data; uint16_t data_off; /** * 16-bit Reference counter. * It should only be accessed using the following functions: * rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and * rte_mbuf_refcnt_set(). The functionality of these functions (atomic, * or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC * config option. */ union { rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */ uint16_t refcnt; /**< Non-atomically accessed refcnt */ }; uint8_t nb_segs; /**< Number of segments. */ uint8_t port; /**< Input port. */ uint64_t ol_flags; /**< Offload features. */ /* remaining bytes are set on RX when pulling packet from descriptor */ MARKER rx_descriptor_fields1; /* * The packet type, which is the combination of outer/inner L2, L3, L4 * and tunnel types. */ union { uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */ struct { uint32_t l2_type:4; /**< (Outer) L2 type. */ uint32_t l3_type:4; /**< (Outer) L3 type. */ uint32_t l4_type:4; /**< (Outer) L4 type. */ uint32_t tun_type:4; /**< Tunnel type. */ uint32_t inner_l2_type:4; /**< Inner L2 type. */ uint32_t inner_l3_type:4; /**< Inner L3 type. */ uint32_t inner_l4_type:4; /**< Inner L4 type. */ }; }; uint32_t pkt_len; /**< Total pkt len: sum of all segments. */ uint16_t data_len; /**< Amount of data in segment buffer. */ uint16_t vlan_tci; /**< VLAN Tag Control Identifier (CPU order) */ union { uint32_t rss; /**< RSS hash result if RSS enabled */ struct { union { struct { uint16_t hash; uint16_t id; }; uint32_t lo; /**< Second 4 flexible bytes */ }; uint32_t hi; /**< First 4 flexible bytes or FD ID, dependent on PKT_RX_FDIR_* flag in ol_flags. */ } fdir; /**< Filter identifier if FDIR enabled */ struct { uint32_t lo; uint32_t hi; } sched; /**< Hierarchical scheduler */ uint32_t usr; /**< User defined tags. See rte_distributor_process() */ } hash; /**< hash information */ uint32_t seqn; /**< Sequence number. See also rte_reorder_insert() */ uint16_t vlan_tci_outer; /**< Outer VLAN Tag Control Identifier (CPU order) */ /* second cache line - fields only used in slow path or on TX */ MARKER cacheline1 __rte_cache_aligned; union { void *userdata; /**< Can be used for external metadata */ uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */ }; struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */ struct rte_mbuf *next; /**< Next segment of scattered packet. */ /* fields to support TX offloads */ union { uint64_t tx_offload; /**< combined for easy fetch */ struct { uint64_t l2_len:7; /**< L2 (MAC) Header Length. */ uint64_t l3_len:9; /**< L3 (IP) Header Length. */ uint64_t l4_len:8;