visdom可视化pytorch训练过程


一、前言

  在深度学习模型训练的过程中,常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等。在Tensorflow中,最常使用的工具非Tensorboard莫属;在Pytorch中,也有类似的TensorboardX,但据说其在张量数据加载的效率方面不如visdom。visdom是FaceBook开发的一款可视化工具,其实质是一款在网页端的web服务器,对Pytorch的支持较好。

二、安装和启动

  visdom的安装比较简单,可以直接使用pip命令。

# visdom 安装指令
pip install visdom

   执行安装命令后,可以执行以下命令启动visdom。

# 启动 visdom web服务器
python -m visdom.server

  若安装成功,则会返回一个网页地址;若报错,则安装失败,可以自行去github上下载源码安装。

 

  将网址复制后在浏览器中打开,就可以看到visdom的主界面。

远程连接本地可视化

1. 连接ssh时,将服务器的8097端口重定向到自己机器上来:

ssh -L 18097:127.0.0.1:8097 username@remote_server_ip(一定要在本地dos窗口输入,不要在xshell里面输入) 

其中:18097:127.0.0.1代表自己机器上的18097号端口,8097是服务器上visdom使用的端口。

2. 在服务器上使用8097端口正常启动tensorboard:

python -m visdom.server

3. 在本地浏览器中输入地址:

127.0.0.1:18097


作者:kyle0x54
链接:https://www.jianshu.com/p/41d4ca00f4f3
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

三、简单使用

  这里以监听损失值loss数据,准确率acc数据及可视化图像等方面简要介绍visdom的使用。

3.1 监听单一数据loss

  在模型训练过程中,loss是最常监听的数据,这里就以loss的监听为例,使用visdom可视化loss的变化过程。为了使代码更加简洁,这里以for循环代替模型逐轮训练的过程,loss值则在每个循环内部随机产生。

复制代码
from visdom import Visdom
import numpy as np
import time

# 将窗口类实例化
viz = Visdom() 

# 创建窗口并初始化
viz.line([0.], [0], win='train_loss', opts=dict(title='train_loss'))

for global_steps in range(10):
    # 随机获取loss值
    loss = 0.2 * np.random.randn() + 1
    # 更新窗口图像
    viz.line([loss], [global_steps], win='train_loss', update='append')
    time.sleep(0.5)
复制代码

 

3.2 同时监听loss和acc

复制代码
from visdom import Visdom
import numpy as np
import time

# 将窗口类实例化
viz = Visdom() 

# 创建窗口并初始化
viz.line([[0.,0.]], [0], win='train', opts=dict(title='loss&acc', legend=['loss', 'acc']))
for global_steps in range(10):
    # 随机获取loss和acc
    loss = 0.1 * np.random.randn() + 1
    acc = 0.1 * np.random.randn() + 0.5
    # 更新窗口图像
    viz.line([[loss, acc]], [global_steps], win='train', update='append')
    # 延时0.5s
    time.sleep(0.5)
复制代码

 

3.3 可视化图像

  在处理图像任务时,还可以用visdom对图像进行可视化。

复制代码
from visdom import Visdom
import numpy as np
import cv2
import torch

# 使用opencv读取数据
img = cv2.imread('pkq.jpg')
# opencv按照BGR读取,而visdom默认按照RGB显示,因此要进行通道转换
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# visdom类似于pytorch中的卷积模型,接收的数据都要求通道数在前
img = np.transpose(img, (2, 0, 1))
img = torch.from_numpy(img)
# 可视化图像
viz.image(img, win='pkq')
复制代码

  visdom可以同时在主面板中打开多个窗口,执行上面3个可视化程序后,主面板如下所示:


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM