机器学习中处理MNIST数据集相当于编程语言中的"hello world",其中训练集中包含60000 个examples, 测试集中包含10000个examples。数据为像素28*28=784的图像,标签为0-9等10个数字标签。
为方便处理,我们希望输出的数据为(x_train,y_train),(x_test,y_test)四个数组,其中x_train包含了60000个维度为784的向量表示图像,将标签进行one-hot编码,比如将数字标签2编码为[0,0,1,0,0,0,0,0,0,0]这样的数组,因此y_test包含60000个维度为10的向量表示对应的标签。如下:
下面介绍几种读取MNIST的方法。
本地文件读取
读取.gz压缩文件
去MNIST官网下载数据集,即四个.gz文件,如下
#!/usr/bin/env python
# coding=utf-8
''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-05-21 23:36:58 @LastEditor: John @LastEditTime: 2020-05-22 07:24:45 @Discription: @Environment: python 3.7.7 '''
import numpy as np
from struct import unpack
import gzip
def __read_image(path):
with gzip.open(path, 'rb') as f:
magic, num, rows, cols = unpack('>4I', f.read(16))
img=np.frombuffer(f.read(), dtype=np.uint8).reshape(num, 28*28)
return img
def __read_label(path):
with gzip.open(path, 'rb') as f:
magic, num = unpack('>2I', f.read(8))
lab = np.frombuffer(f.read(), dtype=np.uint8)
# print(lab[1])
return lab
def __normalize_image(image):
img = image.astype(np.float32) / 255.0
return img
def __one_hot_label(label):
lab = np.zeros((label.size, 10))
for i, row in enumerate(lab):
row[label[i]] = 1
return lab
def load_mnist(x_train_path, y_train_path, x_test_path, y_test_path, normalize=True, one_hot=True):
'''读入MNIST数据集 Parameters ---------- normalize : 将图像的像素值正规化为0.0~1.0 one_hot_label : one_hot为True的情况下,标签作为one-hot数组返回 one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组 Returns ---------- (训练图像, 训练标签), (测试图像, 测试标签) '''
image = {
'train' : __read_image(x_train_path),
'test' : __read_image(x_test_path)
}
label = {
'train' : __read_label(y_train_path),
'test' : __read_label(y_test_path)
}
if normalize:
for key in ('train', 'test'):
image[key] = __normalize_image(image[key])
if one_hot:
for key in ('train', 'test'):
label[key] = __one_hot_label(label[key])
return (image['train'], label['train']), (image['test'], label['test'])
x_train_path='./Mnist/train-images-idx3-ubyte.gz'
y_train_path='./Mnist/train-labels-idx1-ubyte.gz'
x_test_path='./Mnist/t10k-images-idx3-ubyte.gz'
y_test_path='./Mnist/t10k-labels-idx1-ubyte.gz'
(x_train,y_train),(x_test,y_test)=load_mnist(x_train_path, y_train_path, x_test_path, y_test_path)
读取解压的文件
即将四个.gz文件解压,这种读取方式有很多种,如下:
- 使用np.fromfile读取
- 使用idx2numpy模块读取
- 使用array读取
在线读取
使用tensorflow读取
tensor中的keras模块已经集成了mnist相关处理方式,如下:
from keras.datasets import mnist
from keras.utils import np_utils
import numpy as np
def load_data(): # categorical_crossentropy
(x_train, y_train), (x_test, y_test) = mnist.load_data()
number = 10000
x_train = x_train[0:number]
y_train = y_train[0:number]
x_train = x_train.reshape(number, 28 * 28)
x_test = x_test.reshape(x_test.shape[0], 28 * 28)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
# convert class vectors to binary class matrices
y_train = np_utils.to_categorical(y_train, 10)
y_test = np_utils.to_categorical(y_test, 10)
x_test = np.random.normal(x_test) # 加噪声
x_train,x_test= x_train / 255,x_test / 255
return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test) = load_data()
使用python-mnist模块
python中也集成了相关的在线模块,点击查看方法