Union and union all in Pandas dataframe Python:
Union all of two data frames in pandas can be easily achieved by using concat() function. Lets see with an example. First lets create two data frames
| 
        1 
       
        2 
       
        3 
       
        4 
       
        5 
       
        6 
       
        7 
       
        8 
       
        9 
       
        10 
       
        11 
       
        12 
       
        13 
       
        14 
       
        15 
       
        16 
       
        17 
       
        18 
       
        19 
       | importpandas as pdimportnumpy as np#Create a DataFramedf1 ={    'Subject':['semester1','semester2','semester3','semester4','semester1',               'semester2','semester3'],   'Score':[62,47,55,74,31,77,85]}df2 ={    'Subject':['semester1','semester2','semester3','semester4'],   'Score':[90,47,85,74]}df1 =pd.DataFrame(df1,columns=['Subject','Score'])df2 =pd.DataFrame(df2,columns=['Subject','Score'])df1df2 | 
df1 will be

df2 will be

Union all of dataframes in pandas:

UNION ALL
concat() function in pandas creates the union of two dataframe.
| 
        1 
       
        2 
       
        3 
       | """ Union all in pandas"""df_union_all=pd.concat([df1, df2])df_union_all | 
union all of two dataframes df1 and df2 is created with duplicates. So the resultant dataframe will be

Union all of dataframes in pandas and reindex :
concat() function in pandas creates the union of two dataframe with ignore_index = True will reindex the dataframe
| 
        1 
       
        2 
       
        3 
       | """ Union all with reindex in pandas"""df_union_all=pd.concat([df1, df2],ignore_index=True)df_union_all | 
union all of two dataframes df1 and df2 is created with duplicates and the index is changed. So the resultant dataframe will be

Union of dataframes in pandas:

UNION
ref:http://www.datasciencemadesimple.com/union-and-union-all-in-pandas-dataframe-in-python-2/
