feed_dict 的使用


一、feed_dict 说明

参数 feed_dict:允许调用者覆盖图中张量的值,运行时赋值。使用占位符的方式,占位 符是一个可以在之后赋给它数据的变量。它是用来接收外部输入的。占位符可以是一维或者 多维,用来存储 n 维数组。feed_dict 必须与 tf.placeholder 搭配使用,则会检测值的形状是否与占位符兼容。

二、feed_dict 的使用

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' 

import tensorflow as tf 
a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
c = a + b
cc = tf.add(a,b)
x = tf.placeholder(tf.float32,None)
y = x * 20 + 100
开启会话
with tf.Session() as sess:
    c_value = sess.run(c,feed_dict={a:20,b:30})
    print('c_value:',c_value)
    cc_value = sess.run(cc,feed_dict={a:30,b:40})
    print('cc_value:',cc_value)
    y_value = sess.run(y,feed_dict={x:10})
    print('y_value:',y_value)
    y_value = sess.run(y,feed_dict={x:[10,20,30,40]})
    print('y_value:',y_value)

三、运行结果


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM