Rust源码分析:channel's upgrade


https://zhuanlan.zhihu.com/p/50101525

std::sync::mpsc::channel

本文分析Rust标准库中的channel,channel(通道)作为线程间通信的一种方式被广泛使用。

Rust提供了多生产者单消费者的channel。我们重点关注多个生产者的情况。

它的实现方式非常有趣。我把它分为通道升级跟并发队列两部分。

本文描述通道升级

对于一个channel()调用,我们得到的(sender, receiver)是oneshot的,这一点从源码可以得到暗示:

#[stable(feature = "rust1", since = "1.0.0")] pub fn channel<T>() -> (Sender<T>, Receiver<T>) {  let a = Arc::new(oneshot::Packet::new());  (Sender::new(Flavor::Oneshot(a.clone())), Receiver::new(Flavor::Oneshot(a))) }

这里至少有四个结构:

  • oneshot::Packet:Packet,真正存放数据的地方。此处是单个数据(其他类型可能使用队列)
  • Flavor::Oneshot。
  • Sender/Receiver。

我们分别看下他们的数据结构源码,首先是oneshot::Packet,它位于mpsc/oneshot.rs:

pub struct Packet<T> {  // Internal state of the chan/port pair (stores the blocked thread as well)  state: AtomicUsize,  // One-shot data slot location  data: UnsafeCell<Option<T>>,  // when used for the second time, a oneshot channel must be upgraded, and  // this contains the slot for the upgrade  upgrade: UnsafeCell<MyUpgrade<T>>, }

可以看出data是为一个数据准备的。upgrade字段用于通道升级。

另外还有其他类型的Packet,查看同一文件夹发现有shared::Packet/stream::Packet/sync::Packet,他们分别位于shared.rs/stream.rs/sync.rs中。我们重点关注shared::Packet:

pub struct Packet<T> {  queue: mpsc::Queue<T>,  cnt: AtomicIsize, // How many items are on this channel  steals: UnsafeCell<isize>, // How many times has a port received without blocking?  to_wake: AtomicUsize, // SignalToken for wake up   // The number of channels which are currently using this packet.  channels: AtomicUsize,   // See the discussion in Port::drop and the channel send methods for what  // these are used for  port_dropped: AtomicBool,  sender_drain: AtomicIsize,   // this lock protects various portions of this implementation during  // select()  select_lock: Mutex<()>, }

清楚地看到queue字段,它用于存放数据。我们先不关注数据字段。

对于这四个类型的Packet,标准库提供了enun Flavor<T>来做区分:

enum Flavor<T> {  Oneshot(Arc<oneshot::Packet<T>>),  Stream(Arc<stream::Packet<T>>),  Shared(Arc<shared::Packet<T>>),  Sync(Arc<sync::Packet<T>>), }

而我们的Sender/Receiver对象则非常简单地通过存储Flavor<T>来关联到Packet:

pub struct Sender<T> {  inner: UnsafeCell<Flavor<T>>, } pub struct Receiver<T> {  inner: UnsafeCell<Flavor<T>>, }

我们再看一下fn channel:

pub fn channel<T>() -> (Sender<T>, Receiver<T>) {  let a = Arc::new(oneshot::Packet::new());  (Sender::new(Flavor::Oneshot(a.clone())), Receiver::new(Flavor::Oneshot(a))) }

就可以了解到Sender/Receiver里面都存了Flavor,根据Flavor的类型区分Packet的类型,同时Packet作为共享数据被安全地共享。

这就是我们调用channel得到的结果。因为我们重点关注多生产者的情况,所以我们再看一下Clone for Sender的实现:

impl<T> Clone for Sender<T> {  fn clone(&self) -> Sender<T> {  let packet = match *unsafe { self.inner() } {  Flavor::Oneshot(ref p) => {  let a = Arc::new(shared::Packet::new());  {  let guard = a.postinit_lock();  let rx = Receiver::new(Flavor::Shared(a.clone()));  let sleeper = match p.upgrade(rx) {  oneshot::UpSuccess |  oneshot::UpDisconnected => None,  oneshot::UpWoke(task) => Some(task),  };  a.inherit_blocker(sleeper, guard);  }  a  }  Flavor::Stream(ref p) => {  let a = Arc::new(shared::Packet::new());  {  let guard = a.postinit_lock();  let rx = Receiver::new(Flavor::Shared(a.clone()));  let sleeper = match p.upgrade(rx) {  stream::UpSuccess |  stream::UpDisconnected => None,  stream::UpWoke(task) => Some(task),  };  a.inherit_blocker(sleeper, guard);  }  a  }  Flavor::Shared(ref p) => {  p.clone_chan();  return Sender::new(Flavor::Shared(p.clone()));  }  Flavor::Sync(..) => unreachable!(),  };   unsafe {  let tmp = Sender::new(Flavor::Shared(packet.clone()));  mem::swap(self.inner_mut(), tmp.inner_mut());  }  Sender::new(Flavor::Shared(packet))  } }

代码比较多,但我们关注Flavor::Oneshot的情况,先看下self.inner()的实现,它是通过 trait UnsafeFlavor来提供的接口:

trait UnsafeFlavor<T> {  fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>>;  unsafe fn inner_mut(&self) -> &mut Flavor<T> {  &mut *self.inner_unsafe().get()  }  unsafe fn inner(&self) -> &Flavor<T> {  &*self.inner_unsafe().get()  } } impl<T> UnsafeFlavor<T> for Sender<T> {  fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>> {  &self.inner  } }

考虑到Sender存了inner: UnsafeCell<Flavor<T>>,所以这里是通过unsafe的指针操作得到内部Flavor<T>的引用,然后匹配到Flavor::Oneshot的情况:

impl<T> Clone for Sender<T> {  fn clone(&self) -> Sender<T> {  let packet = match *unsafe { self.inner() } {  Flavor::Oneshot(ref p) => {  let a = Arc::new(shared::Packet::new());  {  let guard = a.postinit_lock();  let rx = Receiver::new(Flavor::Shared(a.clone()));  let sleeper = match p.upgrade(rx) {  oneshot::UpSuccess |  oneshot::UpDisconnected => None,  oneshot::UpWoke(task) => Some(task),  };  a.inherit_blocker(sleeper, guard);  }  a  }  ............  };   unsafe {  let tmp = Sender::new(Flavor::Shared(packet.clone()));  mem::swap(self.inner_mut(), tmp.inner_mut());  }  Sender::new(Flavor::Shared(packet))  } }

接下来通过Arc::new(shared::Packet::new()),创建了一个全新的shared::Packet,a。

然后调用a.postinit_lock(),我们看下它的代码:

 pub fn postinit_lock(&self) -> MutexGuard<()> {  self.select_lock.lock().unwrap()  }

结合Shared::Packet的new函数:

 pub fn new() -> Packet<T> {  Packet {  queue: mpsc::Queue::new(),  cnt: AtomicIsize::new(0),  steals: UnsafeCell::new(0),  to_wake: AtomicUsize::new(0),  channels: AtomicUsize::new(2),  port_dropped: AtomicBool::new(false),  sender_drain: AtomicIsize::new(0),  select_lock: Mutex::new(()),  }  }

发现它只是个lock操作,guard作为返回的对象将来用于解锁。

我们接着看原来的代码,这一行是重点:

let rx = Receiver::new(Flavor::Shared(a.clone()));

我们根据新建的a,创建了一个Receiver rx,这里创建的rx是挺奇怪的事情。但是我们只能接着看代码:

 let sleeper = match p.upgrade(rx) {  oneshot::UpSuccess |  oneshot::UpDisconnected => None,  oneshot::UpWoke(task) => Some(task),  };

这里的p就是原来的oneshot::Packet,传入新建的rx,我们调用它的upgrade方法:

 pub fn upgrade(&self, up: Receiver<T>) -> UpgradeResult {  unsafe {  let prev = match *self.upgrade.get() {  NothingSent => NothingSent,  SendUsed => SendUsed,  _ => panic!("upgrading again"),  };  ptr::write(self.upgrade.get(), GoUp(up));   match self.state.swap(DISCONNECTED, Ordering::SeqCst) {  // If the channel is empty or has data on it, then we're good to go.  // Senders will check the data before the upgrade (in case we  // plastered over the DATA state).  DATA | EMPTY => UpSuccess,   // If the other end is already disconnected, then we failed the  // upgrade. Be sure to trash the port we were given.  DISCONNECTED => { ptr::replace(self.upgrade.get(), prev); UpDisconnected }   // If someone's waiting, we gotta wake them up  ptr => UpWoke(SignalToken::cast_from_usize(ptr))  }  }  }

根据初始化的upgrade字段的值,我们发现只能是NothingSent:

 pub fn new() -> Packet<T> {  Packet {  data: UnsafeCell::new(None),  upgrade: UnsafeCell::new(NothingSent),  state: AtomicUsize::new(EMPTY),  }  }

然后我们把GoUp(up)写入了upgrade字段,那么现在我们新建的rx:Receiver也就到了upgrade字段里面,这里我们可以看下GoUp字段相关的代码:

enum MyUpgrade<T> {  NothingSent,  SendUsed,  GoUp(Receiver<T>), }

接着将通过self.state.swap操作将状态改变为DISCONNECTED,因为这个oneshot::Packet将要被淘汰,而我们只是把它的状态从EMPTY变为DISCONNECTED,可以看下相关的代码:

// Various states you can find a port in. const EMPTY: usize = 0; // initial state: no data, no blocked receiver const DATA: usize = 1; // data ready for receiver to take const DISCONNECTED: usize = 2; // channel is disconnected OR upgraded 

最后upgrade返回作为结果UpgradeResult 的UpSuccess标记。我们接着看原来clone的代码:

impl<T> Clone for Sender<T> {  fn clone(&self) -> Sender<T> {  let packet = match *unsafe { self.inner() } {  Flavor::Oneshot(ref p) => {  let a = Arc::new(shared::Packet::new());  {  let guard = a.postinit_lock();  let rx = Receiver::new(Flavor::Shared(a.clone()));  let sleeper = match p.upgrade(rx) {  oneshot::UpSuccess |  oneshot::UpDisconnected => None,  oneshot::UpWoke(task) => Some(task),  };  a.inherit_blocker(sleeper, guard);  }  a  }  ............  };  ..................  } }

这里的p.upgrade(rx)的结果就是UpSuccess,那么sleeper 就是None。

我们接着看a.inherit_blocker(sleeper, guard)的实现:

 pub fn inherit_blocker(&self,  token: Option<SignalToken>,  guard: MutexGuard<()>) {  token.map(|token| {  assert_eq!(self.cnt.load(Ordering::SeqCst), 0);  assert_eq!(self.to_wake.load(Ordering::SeqCst), 0);  self.to_wake.store(unsafe { token.cast_to_usize() }, Ordering::SeqCst);  self.cnt.store(-1, Ordering::SeqCst);   unsafe { *self.steals.get() = -1; }  });   drop(guard);  }

被传入的token也就是sleeper为None,None.map(||{})只是返回None,所以这里的操作只是通过guard释放了锁。到此,我们返回a,就是packet:Arc<shared::Packet<T>>。我们再接着看clone的代码:

impl<T> Clone for Sender<T> {  fn clone(&self) -> Sender<T> {  let packet = match *unsafe { self.inner() } {  Flavor::Oneshot(ref p) => {  let a = Arc::new(shared::Packet::new());  {  let guard = a.postinit_lock();  let rx = Receiver::new(Flavor::Shared(a.clone()));  let sleeper = match p.upgrade(rx) {  oneshot::UpSuccess |  oneshot::UpDisconnected => None,  oneshot::UpWoke(task) => Some(task),  };  a.inherit_blocker(sleeper, guard);  }  a  }  ............  };   unsafe {  let tmp = Sender::new(Flavor::Shared(packet.clone()));  mem::swap(self.inner_mut(), tmp.inner_mut());  }  Sender::new(Flavor::Shared(packet))  } }

注意,我们通过Sender::new(Flavor::Shared(packet))返回了一个新的Sender对象,它基于shared::Packet。同时,我们构造了一个临时的Sender对象tmp,然后通过mem::swap这种unsafe的内存操作,将当前的对象内部的inner替换掉,注意它是UnsafeCell<Flavor<T>>。

Flavor::Oneshot(Arc<oneshot::Packet<T>>)
=> Flavor::Shared(Arc<shared::Packet<T>>)

而这个tmp对象,我们看下它的drop方法,由于swap操作,走Flavor::OneShot路径:

impl<T> Drop for Sender<T> {  fn drop(&mut self) {  match *unsafe { self.inner() } {  Flavor::Oneshot(ref p) => p.drop_chan(),  Flavor::Stream(ref p) => p.drop_chan(),  Flavor::Shared(ref p) => p.drop_chan(),  Flavor::Sync(..) => unreachable!(),  }  } }  pub fn drop_chan(&self) {  match self.state.swap(DISCONNECTED, Ordering::SeqCst) {  DATA | DISCONNECTED | EMPTY => {}   // If someone's waiting, we gotta wake them up  ptr => unsafe {  SignalToken::cast_from_usize(ptr).signal();  }  }  }

self.state字段已经是DISCONNECTED的值了,所以tmp被析构时不会有更多的操作。

以上是针对Flavor::Oneshot的clone实现,我们再看下如果接着调用clone的实现:

 fn clone(&self) -> Sender<T> {  let packet = match *unsafe { self.inner() } {  ............  Flavor::Shared(ref p) => {  p.clone_chan();  return Sender::new(Flavor::Shared(p.clone()));  }  Flavor::Sync(..) => unreachable!(),  };  ............  }

注意到它只会走Flavor::Shared的路径,只返回一个新的Sender<Flavor::Shared<..>>而已

我们看下clone_chan的实现:

 pub fn clone_chan(&self) {  let old_count = self.channels.fetch_add(1, Ordering::SeqCst);   // See comments on Arc::clone() on why we do this (for `mem::forget`).  if old_count > MAX_REFCOUNT {  unsafe {  abort();  }  }  }

只是增加了一个关联管道的计数。

综合以上,我们现在有两个Sender:

  • 一个是一开始的Sender,也就是代码中的self,它内部的inner已经指向Flavor::Shared。
  • 另一个是clone出来的Sender,它一样是指向Flavor::Shared,并且与第一个共享一个shared::Packet。

同时我们还有两个Receiver:

  • 一个是一开始的Receiver,它内部的inner现在还是指向一开始的Flavor::Oneshot,里面包裹了初始的oneshot::Packet。
  • 另一个是Sender.clone()调用中创建的Receiver,它指向了Flavor::Shared。同时它被存放在了初始的oneshot::Packet里面。

也就是说通过第一个Receiver可得到oneshot::Packet,通过它可以得到Flavor::Shared,那么我们就可以成功实现Receiver的升级操作。

但是此刻当Sender的所有clone操作都完成时,Receiver是还没升级的。为了查看Receiver何时升级,我们来看Receiver的recv函数:

 pub fn recv(&self) -> Result<T, RecvError> {  loop {  let new_port = match *unsafe { self.inner() } {  Flavor::Oneshot(ref p) => {  match p.recv(None) {  Ok(t) => return Ok(t),  Err(oneshot::Disconnected) => return Err(RecvError),  Err(oneshot::Upgraded(rx)) => rx,  Err(oneshot::Empty) => unreachable!(),  }  }  Flavor::Stream(ref p) => {  match p.recv(None) {  Ok(t) => return Ok(t),  Err(stream::Disconnected) => return Err(RecvError),  Err(stream::Upgraded(rx)) => rx,  Err(stream::Empty) => unreachable!(),  }  }  Flavor::Shared(ref p) => {  match p.recv(None) {  Ok(t) => return Ok(t),  Err(shared::Disconnected) => return Err(RecvError),  Err(shared::Empty) => unreachable!(),  }  }  Flavor::Sync(ref p) => return p.recv(None).map_err(|_| RecvError),  };  unsafe {  mem::swap(self.inner_mut(), new_port.inner_mut());  }  }  }

我们只关注Flavor::Oneshot的情况,得到内部的oneshot::Packet为p,调用p.recv(None):

 pub fn recv(&self, deadline: Option<Instant>) -> Result<T, Failure<T>> {  // Attempt to not block the thread (it's a little expensive). If it looks  // like we're not empty, then immediately go through to `try_recv`.  if self.state.load(Ordering::SeqCst) == EMPTY {  let (wait_token, signal_token) = blocking::tokens();  let ptr = unsafe { signal_token.cast_to_usize() };   // race with senders to enter the blocking state  if self.state.compare_and_swap(EMPTY, ptr, Ordering::SeqCst) == EMPTY {  if let Some(deadline) = deadline {  let timed_out = !wait_token.wait_max_until(deadline);  // Try to reset the state  if timed_out {  self.abort_selection().map_err(Upgraded)?;  }  } else {  wait_token.wait();  debug_assert!(self.state.load(Ordering::SeqCst) != EMPTY);  }  } else {  // drop the signal token, since we never blocked  drop(unsafe { SignalToken::cast_from_usize(ptr) });  }  }   self.try_recv()  }

此刻,由于之前Sender.clone()操作,这里的self.state已经是DISCONNECTED了,所以我们接着看self.try_recv():

 pub fn try_recv(&self) -> Result<T, Failure<T>> {  unsafe {  match self.state.load(Ordering::SeqCst) {  EMPTY => Err(Empty),  DATA => {  self.state.compare_and_swap(DATA, EMPTY, Ordering::SeqCst);  match (&mut *self.data.get()).take() {  Some(data) => Ok(data),  None => unreachable!(),  }  }  DISCONNECTED => {  match (&mut *self.data.get()).take() {  Some(data) => Ok(data),  None => {  match ptr::replace(self.upgrade.get(), SendUsed) {  SendUsed | NothingSent => Err(Disconnected),  GoUp(upgrade) => Err(Upgraded(upgrade))  }  }  }  }  // We are the sole receiver; there cannot be a blocking  // receiver already.  _ => unreachable!()  }  }  }

显然,这里走的是DISCONNECTED 路径,self.data初始值为None,所以这里的take()操作走None路径,关键是下面的代码:

 None => {  match ptr::replace(self.upgrade.get(), SendUsed) {  SendUsed | NothingSent => Err(Disconnected),  GoUp(upgrade) => Err(Upgraded(upgrade))  }  }

我们把self.upgrade里面存放的数据替换为SendUsed,同时取得原来的数据。

注意,这里取得的数据GoUp(upgrade),upgrade就是之前我们不知道为何创建的Receiver<T>,同时通过Err(Upgraded(upgrade))返回出去,这里的Upgraded是:

pub enum Failure<T> {  Empty,  Disconnected,  Upgraded(Receiver<T>), }

这个值一直返回到Receiver.recv()操作里面,

 pub fn recv(&self) -> Result<T, RecvError> {  loop {  let new_port = match *unsafe { self.inner() } {  Flavor::Oneshot(ref p) => {  match p.recv(None) {  Ok(t) => return Ok(t),  Err(oneshot::Disconnected) => return Err(RecvError),  Err(oneshot::Upgraded(rx)) => rx,  Err(oneshot::Empty) => unreachable!(),  }  }  ............  };  unsafe {  mem::swap(self.inner_mut(), new_port.inner_mut());  }  }  }

根据Err(oneshot::Upgraded(rx))匹配得到rx,也就是创建的那个Receiver。接着rx作为new_port,最后通过一样的mem::swap操作把Receiver内部的Flavor<T>替换为Flavor::Shared模式的对象。

于是,我们看到Receiver已经成功升级为关联到Flavor::Shared<shared::Packet<T>>的通道。

至此,Sender/Receiver从仅存放一个元素的通道升级为无限制容量的MPSC通道。


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM