https://cloud.tencent.com/developer/article/1004356
案例一:同事随手写个压力测试程序,其实现逻辑为:每秒钟先连续发N个132字节的包,然后连续收N个由后台服务回显回来的132字节包。其代码简化如下:
char sndBuf[132]; char rcvBuf[132]; while (1) { for (int i = 0; i < N; i++){ send(fd, sndBuf, sizeof(sndBuf), 0); ... } for (int i = 0; i < N; i++) { recv(fd, rcvBuf, sizeof(rcvBuf), 0); ... } sleep(1); }
在实际测试中发现,当N大于等于3的情况,第2秒之后,每次第三个recv调用,总会阻塞40毫秒左右,但在分析Server端日志时,发现所有请求在Server端处理时耗均在2ms以下。
当时的具体定位过程如下:先试图用strace跟踪客户端进程,但奇怪的是:一旦strace attach
上进程,所有收发又都正常,不会有阻塞现象,一旦退出strace,问题重现。
经同事提醒,很可能是strace改变了程序或系统的某些东西(这个问题现在也还没搞清楚),
于是再用tcpdump抓包分析,发现Server后端在回现应答包后,Client端并没有立即对该数据进行ACK确认,而是等待了近40毫秒后才确认。
经过Google,并查阅《TCP/IP详解卷一:协议》得知,此即TCP的延迟确认(Delayed Ack)机制。
其解决办法如下:在recv系统调用后,调用一次setsockopt
函数,设置TCP_QUICKACK
。最终代码如下:
char sndBuf[132]; char rcvBuf[132]; while (1) { for (int i = 0; i < N; i++) { send(fd, sndBuf, 132, 0); ... } for (int i = 0; i < N; i++) { recv(fd, rcvBuf, 132, 0); setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, (int[]){1}, sizeof(int)); } sleep(1); }
案例二:在营销平台内存化CDKEY版本做性能测试时,发现请求时耗分布异常:90%的请求均在2ms以内,而10%左右时耗始终在38-42ms之间,这是一个很有规律的数字:40ms。
因为之前经历过案例一,所以猜测同样是因为延迟确认机制引起的时耗问题,经过简单的抓包验证后,通过设置TCP_QUICKACK
选项,得以解决时延问题。
延迟确认机制
在《TCP/IP详解卷一:协议》第19章对其进行原理进行了详细描述:TCP在处理交互数据流(即Interactive Data Flow
,区别于Bulk Data Flow
,即成块数据流,典型的交互数据流如telnet、rlogin等)时,采用了Delayed Ack机制以及Nagle算法【累积小数据,然后一起发】来减少小分组数目。
书上已经对这两种机制的原理讲的很清晰,这里不再做复述。本文后续部分将通过分析TCP/IP在Linux下的实现,来解释一下TCP的延迟确认机制。
1.为什么TCP延迟确认会导致延迟?
其实仅有延迟确认机制,是不会导致请求延迟的(初以为是必须等到ACK包发出去,recv系统调用才会返回)。
一般来说,只有当该机制与Nagle算法或拥塞控制(慢启动或拥塞避免)混合作用时,才可能会导致时耗增长。
我们下面来详细看看是如何相互作用的:
延迟确认与Nagle算法
我们先看看Nagle算法的规则(可参考tcp_output.c文件里tcp_nagle_check函数注释):
1)如果包长度达到MSS,则允许发送;
2)如果该包含有FIN,则允许发送;
3)设置了TCP_NODELAY选项,则允许发送;
4)未设置TCP_CORK选项时【打开nagle算法】,若所有发出去的包均被确认,或所有发出去的小数据包(包长度小于MSS)均被确认,则允许发送。
对于规则4),就是说要求一个TCP连接上最多只能有一个未被确认的小数据包,在该分组的确认到达之前,不能发送其他的小数据包。
如果某个小分组的确认被延迟了(案例中的40ms),那么后续小分组的发送就会相应的延迟。也就是说延迟确认影响的并不是被延迟确认的那个数据包,而是后续的应答包。
1 00:44:37.878027 IP 171.24.38.136.44792 > 175.24.11.18.9877: S 3512052379:3512052379(0) win 5840 <mss 1448,wscale 7> 2 00:44:37.878045 IP 175.24.11.18.9877 > 171.24.38.136.44792: S 3581620571:3581620571(0) ack 3512052380 win 5792 <mss 1460,wscale 2> 3 00:44:37.879080 IP 171.24.38.136.44792 > 175.24.11.18.9877: . ack 1 win 46 ...... 4 00:44:38.885325 IP 171.24.38.136.44792 > 175.24.11.18.9877: P 1321:1453(132) ack 1321 win 86 5 00:44:38.886037 IP 175.24.11.18.9877 > 171.24.38.136.44792: P 1321:1453(132) ack 1453 win 2310 6 00:44:38.887174 IP 171.24.38.136.44792 > 175.24.11.18.9877: P 1453:2641(1188) ack 1453 win 102 7 00:44:38.887888 IP 175.24.11.18.9877 > 171.24.38.136.44792: P 1453:2476(1023) ack 2641 win 2904 8 00:44:38.925270 IP 171.24.38.136.44792 > 175.24.11.18.9877: . ack 2476 win 118 9 00:44:38.925276 IP 175.24.11.18.9877 > 171.24.38.136.44792: P 2476:2641(165) ack 2641 win 2904 10 00:44:38.926328 IP 171.24.38.136.44792 > 175.24