利用ImageNet下的预训练权重采用迁移学习策略,能够实现模型快速训练,提高图像分类性能。下面以vgg和resnet网络模型为例,微调最后的分类层进行分类。
注意,微调只对分类层(也就是全连接层)的参数进行更新,前面的参数需要被冻结。
(1)微调VGG模型进行图像分类(以vgg16为例)
import torch
import torch.nn as nn
import torchvision.models as models
classes_num = 200 # 数据集的类别数
model = models.vgg16(pretrained=True)
for parameter in model.parameters():
parameter.required_grad = False
model.classifier = nn.Sequential(nn.Linear(512*7*7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(4096, classes_num))
model = model.cuda()
print(model)
(2)微调ResNet模型进行图像分类(以ResNet-34为例)
import torch
import torch.nn as nn
import torchvision.models as models
classes_num = 200 # 数据集的类别数
model = models.resnet34(pretrained=True)
for parameter in model.parameters():
parameter.required_grad = False
model.classifier = nn.Linear(512, classes_num)
model = model.cuda()
print(model)