题意:给定一个长度为\(n\)的数组,求\(gcd\{{lcm(a_i,a_j)|i<j\}}\)
思路:
对于\(a_1\),其产生的\(lcm\)有\(lcm(a_1,a_2)、lcm(a_1,a_3)、...lcm(a_1,a_n)\)
则它们的最大公因数\(gcd_1=gcd(lcm(a_1,a_2)、lcm(a_1,a_3)、..lcm(a_1,a_n))\)
由于它们中的每一项都含有公因子\(a_1\),故\(a_1\)必为\(gcd_1\)的因子
那么可化简为\(gcd_1=lcm(a_1,gcd(a_2,a_3,...a_n))\)
以此类推,可得\(gcd_2,gcd_3....gcd_n\)
那么答案可表示为 \(gcd(gcd_1,gcd_2,...gcd_n)\)
#include<iostream>
using namespace std;
const int maxn = 3e5 + 10;
typedef long long LL;
LL gcd(LL a, LL b) {return b ? gcd(b, a % b) : a;}
LL lcm(LL a, LL b) {return a * b / gcd(a, b);}
LL a[maxn], suf[maxn];
int main()
{
LL n, ans = 0;
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i];
for (int i = n; i >= 1; i--) suf[i] = gcd(suf[i + 1], a[i]);
//后缀
//用来求gcd_1=lcm(a_1,gcd(a_2,a_3...a_n))中的gcd(a_2,a_3...a_n)
for (int i = 1; i <= n; i++) ans = gcd(ans, lcm(a[i], suf[i + 1]));
//反复更新答案来求gcd(gcd_1,gcd_2,...gcd_n)
cout << ans << endl;
return 0;
}