统计手机号耗费的总上行流量、下行流量、总流量(序列化)
统计总上行流量、总下行流量。
数据准备
输入数据格式:
数据格式:时间戳、电话号码、基站的物理地址、访问网址的ip、网站域名、数据包、接包数、上行/传流量、下行/载流量、响应码 |
输出数据格式:
1356·0436666 1116 954 2070 手机号码 上行流量 下行流量 总流量 |
分析-基本思路:
Map阶段:
(1)读取一行数据,切分字段
(2)抽取手机号、上行流量、下行流量
(3)以手机号为key,bean对象为value输出,即context.write(手机号,bean);
Reduce阶段:
(1)累加上行流量和下行流量得到总流量。
(2)实现自定义的bean来封装流量信息,并将bean作为map输出的key来传输
(3)MR程序在处理数据的过程中会对数据排序(map输出的kv对传输到reduce之前,会排序),排序的依据是map输出的key
所以,我们如果要实现自己需要的排序规则,则可以考虑将排序因素放到key中,让key实现接口:Writable。
一、封装类LiuLiangBean-实现Writable接口-序列化
package liu.liang; import lombok.Getter; import lombok.NoArgsConstructor; import lombok.Setter; import org.apache.hadoop.io.Writable; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; @Getter @Setter @NoArgsConstructor /** * 封装类LiuLiangBean-实现Writable接口-序列化,自定义的数据类型想要在Hadoop集群中传递,需要实现Hadoop的序列化框架 */ public class LiuLiangBean implements Writable { //上行流量 private long upflow; //下行流量 private long downflow; //总流量 private long sumflow; public LiuLiangBean(long upflow, long downflow) { this.upflow = upflow; this.downflow = downflow; this.sumflow = upflow+downflow; } /** 序列化-将我们要传输的数据序列化成字节流 * @param dataOutput * @throws IOException */ @Override public void write(DataOutput dataOutput) throws IOException { dataOutput.writeLong(upflow); dataOutput.writeLong(downflow); dataOutput.writeLong(sumflow); } /**反序列化-从数据字节流中逐个恢复出各个字段 ,因为反射机制的需要,需要定义一个无参构造函数 * @param dataInput * @throws IOException */ @Override public void readFields(DataInput dataInput) throws IOException { this.upflow = dataInput.readLong(); this.downflow = dataInput.readLong(); this.sumflow = dataInput.readLong(); } @Override public String toString() { return this.upflow + "\t" + this.downflow + "\t" + sumflow; } }
二、分隔类-继承Mapper类
package liu.liang; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; /** * 分隔类-继承Mapper类 */ public class LiuLiangMapper extends Mapper<LongWritable, Text,Text,LiuLiangBean> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] fields = line.split("\t"); //转换类型:String--》Long long upflow = Long.parseLong(fields[fields.length - 3]); long downflow = Long.parseLong(fields[fields.length - 2]); //电话号码作Key,上行流量和下行流量作Value context.write(new Text(fields[1]),new LiuLiangBean(upflow,downflow)); } }
三、统计总上行流量、总下行流量类
package liu.liang; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; /** * 统计总上行流量、总下行流量类 */ public class LiuLiangReducer extends Reducer<Text,LiuLiangBean,Text,LiuLiangBean> { @Override protected void reduce(Text key, Iterable<LiuLiangBean> values, Context context) throws IOException, InterruptedException { long sumUpFlow = 0; long sumDownFlow = 0; for(LiuLiangBean value:values){ sumUpFlow += value.getUpflow(); sumDownFlow += value.getUpflow(); } context.write(key,new LiuLiangBean(sumUpFlow,sumDownFlow)); } }
四、执行类
package liu.liang; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; /** * 执行类 */ public class LiuLiangDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { long startTime = System.currentTimeMillis(); args = new String[]{"D:/phone_data.txt", "D:/HDFS/p_d"}; //1.获取配置信息 Configuration conf = new Configuration(); Job job = Job.getInstance(conf); //2.反射类 job.setJarByClass(LiuLiangDriver.class); job.setMapperClass(LiuLiangMapper.class); job.setReducerClass(LiuLiangReducer.class); //3.Reduce输入、输出的K、V类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LiuLiangBean.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LiuLiangBean.class); //4.数据的输入和输出的指定目录 FileInputFormat.setInputPaths(job,new Path(args[0])); FileOutputFormat.setOutputPath(job,new Path(args[1])); //5.提交job job.waitForCompletion(true); long endTime = System.currentTimeMillis(); System.out.println("程序运行的时间为:"+(endTime-startTime)); } }
五、总结
注意
这里的map(LongWritable key, Text value, Context context)方法中的值:Text value 是针对一行数据进行的。
而reduce(Text key, Iterable<LiuLiangBean> values, Context context)方法中的值:Iterable<LiuLiangBean> values 是针对Map后的整个数据文件中的每一组<K、V>对,针对key的值的那部分数据进行操作的。
也就是说,这里的key唯一,因此总要用到for循环。这个区别可以根据value是否为复数(即:value/values)进行区分。