计算机视觉图像预处理中的 Zero-mean(零均值化) 和 Normalization(归一化)


 

 

 

 

在训练神经网络前,往往要对原始图像数据进行预处理,中心化(Zero-centered及Mean-subtraction)和归一化(Normalization)。那么具体是什么意思呢?

1、零均值化/中心化

在训练神经网络前,预处理训练集数据,通常是先进行零均值化(zero-mean),即让所有训练图像中每个位置的像素均值为0,使得像素范围变成 [-128, 127],以0为中心。

零均值化:是指变量减去它的均值;

优点:在反向传播时加快网络中每层权重参数的收敛;还可以增加基向量的正交性。

2、归一化/标准化

不同的评价指标往往具有不同的量纲和量纲单位,这样无法对结果进行分析,难以对结果进行衡量,为了消除指标之间的量纲影响,需要对数据进行标准化处理,以使数据指标之间存在可比性。

归一化:是指变量减去它的均值,再除以标准差;

优点:归一化后加快了梯度下降求最优解的速度;并且有可能提高精度。

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM