Markdown符号速查表
小写字母 |
语法 |
大写字母 |
语法 |
\(\alpha\) |
$\alpha$ |
\(\Alpha\) |
$\Alpha$ |
\(\beta\) |
$\beta$ |
\(\Beta\) |
$\Beta$ |
\(\gamma\) |
$\gamma$ |
\(\Gamma\) |
$\Gamma$ |
\(\delta\) |
$\delta$ |
\(\Delta\) |
$\Delta$ |
\(\lambda\) |
$\lambda$ |
\(\Lambda\) |
$\Lambda$ |
\(\omega\) |
$\omega$ |
\(\Omega\) |
$\Omega$ |
\(\psi\) |
$\psi$ |
\(\Psi\) |
$\Psi$ |
\(\chi\) |
$\chi$ |
\(\Chi\) |
$\Chi$ |
\(\rho\) |
$\rho$ |
\(\Rho\) |
$\Rho$ |
\(\epsilon\) |
$\epsilon$ |
\(\Epsilon\) |
$\Epsilon$ |
\(\kappa\) |
$\kappa$ |
\(\Kappa\) |
$\Kappa$ |
\(\pi\) |
$\pi$ |
\(\Pi\) |
$\Pi$ |
\(\phi\) |
$\phi$ |
\(\Phi\) |
$\Phi$ |
\(\sigma\) |
$\sigma$ |
\(\Sigma\) |
$\Sigma$ |
\(\theta\) |
$\theta$ |
\(\Theta\) |
$\Theta$ |
\(\upsilon\) |
$\upsilon$ |
\(\Upsilon\) |
$\Upsilon$ |
\(\xi\) |
$\xi$ |
\(\Xi\) |
$\Xi$ |
\(\tau\) |
$\tau$ |
\(\Tau\) |
$\Tau$ |
\(\iota\) |
$\iota$ |
\(\Iota\) |
$\Iota$ |
\(\eta\) |
$\eta$ |
\(\Eta\) |
$\Eta$ |
\(\zeta\) |
$\zeta$ |
\(\Zeta\) |
$\Zeta$ |
\(\mu\) |
$\mu$ |
\(\Mu\) |
$\Mu$ |
\(\nu\) |
$\nu$ |
\(\Nu\) |
$\Nu$ |
|
|
\(\digamma\) |
$\digamma$ |
|
|
\(\aleph\) |
$\aleph$ |
|
|
\(\gimel\) |
$\gimel$ |
|
|
\(\daleth\) |
$\daleth$ |
\(\varrho\) |
$\varrho$ |
|
|
\(\varepsilon\) |
$\varepsilon$ |
|
|
\(\varkappa\) |
$\varkappa$ |
|
|
\(\varpi\) |
$\varpi$ |
|
|
\(\varphi\) |
$\varphi$ |
|
|
\(\varsigma\) |
$\varsigma$ |
|
|
\(\vartheta\) |
$\vartheta$ |
|
|
算符形式 |
语法 |
\(\times\) |
$\times$ |
\(\div\) |
$\div$ |
\(\sqrt{x}\) |
$\sqrt{x}$ |
\(\frac{n}{d}\) |
$\frac{n}{d}$ |
\(\cdot\) |
$\cdot$ |
\(\centerdot\) |
$\centerdot$ |
\(\setminus\) |
$\setminus$ |
\(\%\) |
$\%$ |
\(\ast\) |
$\ast$ |
\(\$\) |
$\$$ |
\(\infty\) |
$\infty$ |
\(\pm\) |
$\pm$ |
\(\mp\) |
$\mp$ |
\(\lvert\) |
$\lvert$ |
\(\rvert\) |
$\rvert$ |
\(\lVert\) |
$\lVert$ |
\(\rVert\) |
$\rVert$ |
算符形式 |
语法 |
\(\neq\) |
$\neq$ |
\(\leq\) |
$\leq$ |
\(\ge\) |
$\ge$| |
\(\equiv\) |
$\equiv$ |
\(\approx\) |
$\approx$ |
\(\simeq\) |
$\simeq$ |
\(\cong\) |
$\cong$ |
\(\ll\) |
$\ll$ |
\(\gg\) |
$\gg$ |
\(\propto\) |
$\propto$ |
\(\varnothing\) |
$\varnothing$ |
\(\varpropto\) |
$\varpropto$ |
\(\mid\) |
$\mid$ |
\(\shortmid\) |
$\shortmid$ |
\(\parallel\) |
$\parallel$ |
\(\multimap\) |
$\multimap$ |
\(\perp\) |
$\perp$ |
\(\subset\) |
$\subset$ |
\(\supset\) |
$\supset$ |
\(\subseteq\) |
$\subseteq$ |
\(\supseteq\) |
$\supseteq$ |
\(\subseteqq\) |
$\subseteqq$ |
\(\supseteqq\) |
$\supseteqq$ |
\(\nsubseteq\) |
$\nsubseteq$ |
\(\nsupseteq\) |
$\nsupseteq$ |
\(\subsetneqq\) |
$\subsetneqq$ |
\(\supsetneqq\) |
$\supsetneqq$ |
\(\cup\) |
$\cup$ |
\(\cap\) |
$\cap$ |
\(\in\) |
$\in$ |
\(\notin\) |
$\notin$ |
\(\vee\) |
$\vee$ |
\(\wedge\) |
$\wedge$ |
\(\And\) |
$\And$ |
算符形式 |
语法 |
\(\forall\) |
$\forall$| |
\(\exists\) |
$\exists$| |
\(\to\) |
$\to$| |
\(\iff\) |
$\iff$| |
\(\because\) |
$\because$| |
\(\therefore\) |
$\therefore$| |
算符形式 |
语法 |
\(\pounds\) |
$\pounds$ |
\(\partial\) |
$\partial$ |
\(\nabla\) |
$\nabla$ |
\(\prod\) |
$\prod$ |
\(\sum\) |
$\sum$| |
\(\int\) |
$\int$| |
\(\iint\) |
$\iint$| |
\(\iiint\) |
$\iiint$| |
\(\oint\) |
$\oint$| |
\(\oiint\) |
$\oiint$| |
\(\coprod\) |
$\coprod$| |
\(\ell\) |
$\ell$| |
\(\mathscr{F}\) |
$\mathscr{F}$| |
\(\mathscr{L}\) |
$\mathscr{L}$| |
\(\mathscr{M}\) |
$\mathscr{M}$| |
\(\mathscr{Z}\) |
$\mathscr{Z}$| |
\(\lim_{x\to\infty}\) |
$\lim_{x\to\infty}$| |
示例 |
语法 |
\(\vec{a}\) |
$\vec{a}$| |
\(\ldots\) |
$\ldots$| |
\(\cdots\) |
$\cdots$| |
\(\ddots\) |
$\ddots$| |
\(\vdots\) |
$\vdots$| |
\(\left[ \begin{matrix}a&b\\c&d\end{matrix} \right]\) |
$\left[ \begin{matrix}a&b\\c&d\end{matrix} \right]$| |
示例 |
语法 |
\(\mathnormal{A}\) |
$\mathnormal{A}$| |
\(\mathrm{A}\) |
$\mathrm{A}$| |
\(\mathsf{A}\) |
$\mathsf{A}$| |
\(\mathbf{A}\) |
$\mathbf{A}$| |
\(\mathit{A}\) |
$\mathit{A}$| |
\(\mathtt{A}\) |
$\mathtt{A}$| |
\(\mathfrak{A}\) |
$\mathfrak{A}$| |
\(\mathscr{A}\) |
$\mathscr{A}$| |
\(\mathcal{A}\) |
$\mathcal{A}$| |
\(\mathbb{A}\) |
$\mathbb{A}$| |
\(\boldsymbol{A}\) |
$\boldsymbol{A}$| |
示例 |
语法 |
\(\tilde{a}\) |
$\tilde{a}$| |
\(\hat{a}\) |
$\hat{a}$| |
\(\bar{a}\) |
$\bar{a}$| |
\(\dot{a}\) |
$\dot{a}$| |
\(\ddot{a}\) |
$\ddot{a}$ |
示例 |
语法 |
示例 |
语法 |
示例 |
语法 |
\(\rightarrow\) |
$\rightarrow$| |
\(\leftarrow\) |
$\leftarrow$| |
\(\to\) |
$\to$| |
\(\iff\) |
$\iff$| |
\(\multimap\) |
$\multimap$| |
\(\Rightarrow\) |
$\Rightarrow$| |
\(\Leftarrow\) |
$\Leftarrow$| |
\(\longrightarrow\) |
$\longrightarrow$| |
\(\Longrightarrow\) |
$\Longrightarrow$| |
\(\longleftarrow\) |
$\longleftarrow$| |
\(\Longleftarrow\) |
$\Longleftarrow$| |
\(\uparrow\) |
$\uparrow$| |
\(\Uparrow\) |
$\Uparrow$| |
\(\downarrow\) |
$\downarrow$| |
\(\Downarrow\) |
$\Downarrow$| |
\(\updownarrow\) |
$\updownarrow$| |
\(\Updownarrow\) |
$\Updownarrow$| |
\(\nearrow\) |
$\nearrow$| |
\(\nwarrow\) |
$\nwarrow$| |
\(\swarrow\) |
$\swarrow$| |
\(\searrow\) |
$\searrow$| |
\(\longleftrightarrow\) |
$\longleftrightarrow$| |
\(\Longleftrightarrow\) |
$\Longleftrightarrow$| |
\(\leftrightsquigarrow\) |
$\leftrightsquigarrow$| |
\(\longmapsto\) |
$\longmapsto$| |
\(\rightarrowtail\) |
$\rightarrowtail$| |
\(\leftarrowtail\) |
$\leftarrowtail$| |
\(\dashrightarrow\) |
$\dashrightarrow$| |
\(\dashleftarrow\) |
$\dashleftarrow$| |
\(\circlearrowright\) |
$\circlearrowright$| |
\(\circlearrowleft\) |
$\circlearrowleft$| |
\(\Rsh\) |
$\Rsh$| |
\(\Lsh\) |
$\Lsh$| |
\(\hookrightarrow\) |
$\hookrightarrow$| |
\(\hookleftarrow\) |
$\hookleftarrow$| |
\(\curvearrowright\) |
$\curvearrowright$| |
\(\curvearrowleft\) |
$\curvearrowleft$| |
\(\looparrowright\) |
$\looparrowright$| |
\(\looparrowleft\) |
$\looparrowleft$| |
\(\xleftarrow{a}\) |
$\xleftarrow{a}$ |
\(\xrightarrow{a}\) |
$\xrightarrow{a}$ |
\(\xleftrightarrow{a}\) |
$\xleftrightarrow{a}$ |
\(\overrightarrow{a}\) |
$\overrightarrow{a}$ |
\(\overleftarrow{a}\) |
$\overleftarrow{a}$ |
\(\overleftrightarrow{a}\) |
$\overleftrightarrow{a}$ |
\(\underrightarrow{a}\) |
$\underrightarrow{a}$ |
\(\underleftarrow{a}\) |
$\underleftarrow{a}$ |
\(\underleftrightarrow{a}\) |
$\underleftrightarrow{a}$ |
\[f_{\epsilon}(t) = \begin{cases} \frac{1}{\epsilon}, -\frac{\epsilon}{2} \leq t \leq \frac{\epsilon}{2} \\ 0, otherwise \end{cases} \]
$$
f_{\epsilon}(t) =
\begin{cases}
\frac{1}{\epsilon}, -\frac{\epsilon}{2} \leq t \leq \frac{\epsilon}{2} \\
0, otherwise
\end{cases}
$$
\[\begin{aligned} f(t) & = \frac{(s+1)(s+3)}{(s+1)(s+2)(s+5)} \\ & = \frac{s+3}{(s+2)(s+5)} \end{aligned} \]
$$
\begin{aligned}
f(t) & = \frac{(s+1)(s+3)}{(s+1)(s+2)(s+5)} \\
& = \frac{s+3}{(s+2)(s+5)}
\end{aligned}
$$