copy from : http://gityuan.com/2016/10/03/binder_linktodeath/
基于Android 6.0源码, 涉及相关源码
frameworks/base/core/java/android/os/Binder.java
frameworks/base/core/jni/android_util_Binder.cpp
frameworks/native/libs/binder/BpBinder.cpp
一. 概述
死亡通知是为了让Bp端(客户端进程)进能知晓Bn端(服务端进程)的生死情况,当Bn端进程死亡后能通知到Bp端。
- 定义:AppDeathRecipient是继承IBinder::DeathRecipient类,主要需要实现其binderDied()来进行死亡通告。
- 注册:binder->linkToDeath(AppDeathRecipient)是为了将AppDeathRecipient死亡通知注册到Binder上。
Bp端只需要覆写binderDied()方法,实现一些后尾清除类的工作,则在Bn端死掉后,会回调binderDied()进行相应处理。
1.1 实例说明
public final class ActivityManagerService { private final boolean attachApplicationLocked(IApplicationThread thread, int pid) { ... //创建IBinder.DeathRecipient子类对象 AppDeathRecipient adr = new AppDeathRecipient(app, pid, thread); //建立binder死亡回调 thread.asBinder().linkToDeath(adr, 0); app.deathRecipient = adr; ... //取消binder死亡回调 app.unlinkDeathRecipient(); } private final class AppDeathRecipient implements IBinder.DeathRecipient { ... public void binderDied() { synchronized(ActivityManagerService.this) { appDiedLocked(mApp, mPid, mAppThread, true); } } } }
前面涉及到linkToDeath和unlinkToDeath方法,实现如下:
[-> Binder.java]
public class Binder implements IBinder { public void linkToDeath(DeathRecipient recipient, int flags) { } public boolean unlinkToDeath(DeathRecipient recipient, int flags) { return true; } } final class BinderProxy implements IBinder { public native void linkToDeath(DeathRecipient recipient, int flags) throws RemoteException; public native boolean unlinkToDeath(DeathRecipient recipient, int flags); }
可见,以上两个方法:
- 当为Binder服务端,则相应的两个方法实现为空,没有实际功能;
- 当为BinderProxy代理端,则调用native方法来实现相应功能,这是真实的使用场景。
二. 上层注册死亡通知
BinderProxy调用linkToDeath()方法是一个native方法, 通过jni进入如下方法:
2.1 linkToDeath
[-> android_util_Binder.cpp]
static void android_os_BinderProxy_linkToDeath(JNIEnv* env, jobject obj, jobject recipient, jint flags) { if (recipient == NULL) { jniThrowNullPointerException(env, NULL); return; } //获取BinderProxy.mObject成员变量值, 即BpBinder对象 IBinder* target = (IBinder*)env->GetLongField(obj, gBinderProxyOffsets.mObject); ... //只有Binder代理对象才会进入该分支 if (!target->localBinder()) { DeathRecipientList* list = (DeathRecipientList*) env->GetLongField(obj, gBinderProxyOffsets.mOrgue); //创建JavaDeathRecipient对象[见小节2.1.1] sp<JavaDeathRecipient> jdr = new JavaDeathRecipient(env, recipient, list); //建立死亡通知[见小节2.2] status_t err = target->linkToDeath(jdr, NULL, flags); if (err != NO_ERROR) { //添加死亡通告失败, 则从list移除引用[见小节2.1.3] jdr->clearReference(); signalExceptionForError(env, obj, err, true /*canThrowRemoteException*/); } } }
过程说明:
- 获取DeathRecipientList: 其成员变量mList记录该BinderProxy的JavaDeathRecipient列表信息;
- 一个BpBinder可以注册多个死亡回调
- 创建JavaDeathRecipient: 继承于IBinder::DeathRecipient
2.1.1 JavaDeathRecipient
[-> android_util_Binder.cpp]
class JavaDeathRecipient : public IBinder::DeathRecipient { public: JavaDeathRecipient(JNIEnv* env, jobject object, const sp<DeathRecipientList>& list) : mVM(jnienv_to_javavm(env)), mObject(env->NewGlobalRef(object)), mObjectWeak(NULL), mList(list) { //将当前对象sp添加到列表DeathRecipientList list->add(this); android_atomic_inc(&gNumDeathRefs); incRefsCreated(env); //[见小节2.1.2] } }
该方法主要功能:
- 通过env->NewGlobalRef(object),为recipient创建相应的全局引用,并保存到mObject成员变量;
- 将当前对象JavaDeathRecipient的强指针sp添加到DeathRecipientList;
2.1.2 incRefsCreated
[-> android_util_Binder.cpp]
static void incRefsCreated(JNIEnv* env) { int old = android_atomic_inc(&gNumRefsCreated); if (old == 2000) { android_atomic_and(0, &gNumRefsCreated); //触发forceGc env->CallStaticVoidMethod(gBinderInternalOffsets.mClass, gBinderInternalOffsets.mForceGc); } }
该方法的主要是增加引用计数incRefsCreated,每计数增加2000则执行一次forceGc;
会触发调用incRefsCreated()的场景有:
- JavaBBinder对象创建过程
- JavaDeathRecipient对象创建过程;
- javaObjectForIBinder()方法:将native层BpBinder对象转换为Java层BinderProxy对象的过程;
2.1.3 clearReference
[-> android_util_Binder.cpp ::JavaDeathRecipient]
void clearReference() { sp<DeathRecipientList> list = mList.promote(); if (list != NULL) { list->remove(this); //从列表中移除引用 } }
清除引用,将JavaDeathRecipient从DeathRecipientList列表中移除.
2.2 linkToDeath
[-> BpBinder.cpp]
status_t BpBinder::linkToDeath(
const sp<DeathRecipient>& recipient, void* cookie, uint32_t flags) { Obituary ob; ob.recipient = recipient; //该对象为JavaDeathRecipient ob.cookie = cookie; // cookie=NULL ob.flags = flags; // flags=0 { AutoMutex _l(mLock); if (!mObitsSent) { //没有执行过sendObituary,则进入该方法 if (!mObituaries) { mObituaries = new Vector<Obituary>; if (!mObituaries) { return NO_MEMORY; } getWeakRefs()->incWeak(this); IPCThreadState* self = IPCThreadState::self(); //[见小节2.3] self->requestDeathNotification(mHandle, this); //[见小节2.4] self->flushCommands(); } //将新创建的Obituary添加到mObituaries ssize_t res = mObituaries->add(ob); return res >= (ssize_t)NO_ERROR ? (status_t)NO_ERROR : res; } } return DEAD_OBJECT; }
2.2.1 DeathRecipient关系图
Java层的BinderProxy.mOrgue指向DeathRecipientList,而DeathRecipientList记录JavaDeathRecipient对象。
2.3 requestDeathNotification
[-> IPCThreadState.cpp]
status_t IPCThreadState::requestDeathNotification(int32_t handle, BpBinder* proxy) { mOut.writeInt32(BC_REQUEST_DEATH_NOTIFICATION); mOut.writeInt32((int32_t)handle); mOut.writePointer((uintptr_t)proxy); return NO_ERROR; }
进入Binder driver后, 直接调用后进入binder_thread_write, 处理BC_REQUEST_DEATH_NOTIFICATION命令
2.4 flushCommands
[-> IPCThreadState.cpp]
void IPCThreadState::flushCommands()
{
if (mProcess->mDriverFD <= 0) return; talkWithDriver(false); }
flushCommands就是把命令向驱动发出,此处参数为false,则不会阻塞等待读。 向Kernel层的binder driver发送BC_REQUEST_DEATH_NOTIFICATION命令,经过ioctl执行到 binder_ioctl_write_read()方法。
三. Kernel层注册通知
3.1 binder_ioctl_write_read
[-> kernel/drivers/android/binder.c]
static int binder_ioctl_write_read(struct file *filp, unsigned int cmd, unsigned long arg, struct binder_thread *thread) { int ret = 0; struct binder_proc *proc = filp->private_data; void __user *ubuf = (void __user *)arg; struct binder_write_read bwr; if (copy_from_user(&bwr, ubuf, sizeof(bwr))) { //把用户空间数据ubuf拷贝到bwr ret = -EFAULT; goto out; } if (bwr.write_size > 0) { //此时写缓存有数据【见小节3.2】 ret = binder_thread_write(proc, thread, bwr.write_buffer, bwr.write_size, &bwr.write_consumed); ... } if (bwr.read_size > 0) { //此时读缓存没有数据 ... } if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { //将内核数据bwr拷贝到用户空间ubuf ret = -EFAULT; goto out; } out: return ret; }
3.2 binder_thread_write
[-> kernel/drivers/android/binder.c]
static int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed) { uint32_t cmd; //proc, thread都是指当前发起端进程的信息 struct binder_context *context = proc->context; void __user *buffer = (void __user *)(uintptr_t)binder_buffer; void __user *ptr = buffer + *consumed; void __user *end = buffer + size; while (ptr < end && thread->return_error == BR_OK) { get_user(cmd, (uint32_t __user *)ptr); //获取BC_REQUEST_DEATH_NOTIFICATION ptr += sizeof(uint32_t); switch (cmd) { case BC_REQUEST_DEATH_NOTIFICATION:{ //注册死亡通知 uint32_t target; void __user *cookie; struct binder_ref *ref; struct binder_ref_death *death; get_user(target, (uint32_t __user *)ptr); //获取target ptr += sizeof(uint32_t); get_user(cookie, (void __user * __user *)ptr); //获取BpBinder ptr += sizeof(void *); ref = binder_get_ref(proc, target); //拿到目标服务的binder_ref if (cmd == BC_REQUEST_DEATH_NOTIFICATION) { //native Bp可注册多个,但Kernel只允许注册一个死亡通知 if (ref->death) { break; } death = kzalloc(sizeof(*death), GFP_KERNEL); INIT_LIST_HEAD(&death->work.entry); death->cookie = cookie; //BpBinder指针 ref->death = death; //当目标binder服务所在进程已死,则直接发送死亡通知。这是非常规情况 if (ref->node->proc == NULL) { ref->death->work.type = BINDER_WORK_DEAD_BINDER; //当前线程为binder线程,则直接添加到当前线程的todo队列. if (thread->looper & (BINDER_LOOPER_STATE_REGISTERED | BINDER_LOOPER_STATE_ENTERED)) { list_add_tail(&ref->death->work.entry, &thread->todo); } else { list_add_tail(&ref->death->work.entry, &proc->todo); wake_up_interruptible(&proc->wait); } } } else { ... } } break; case ...; } *consumed = ptr - buffer; } }
该方法在处理BC_REQUEST_DEATH_NOTIFICATION过程,正好遇到对端目标binder服务所在进程已死的情况, 向todo队列增加BINDER_WORK_DEAD_BINDER事务,直接发送死亡通知,但这属于非常规情况。
更常见的场景是binder服务所在进程死亡后,会调用binder_release方法, 然后调用binder_node_release.这个过程便会发出死亡通知的回调.
四. 触发死亡通知
当Binder服务所在进程死亡后,会释放进程相关的资源,Binder也是一种资源。 binder_open打开binder驱动/dev/binder,这是字符设备,获取文件描述符。在进程结束的时候会有一个关闭文件系统的过程中会调用驱动close方法,该方法相对应的是release()方法。当binder的fd被释放后,此处调用相应的方法是binder_release().
但并不是每个close系统调用都会触发调用release()方法. 只有真正释放设备数据结构才调用release(),内核维持一个文件结构被使用多少次的计数,即便是应用程序没有明显地关闭它打开的文件也适用: 内核在进程exit()时会释放所有内存和关闭相应的文件资源, 通过使用close系统调用最终也会release binder.
4.1 release
[-> binder.c]
static const struct file_operations binder_fops = { .owner = THIS_MODULE, .poll = binder_poll, .unlocked_ioctl = binder_ioctl, .compat_ioctl = binder_ioctl, .mmap = binder_mmap, .open = binder_open, .flush = binder_flush, .release = binder_release, //对应于release的方法 };
4.2 binder_release
static int binder_release(struct inode *nodp, struct file *filp) { struct binder_proc *proc = filp->private_data; debugfs_remove(proc->debugfs_entry); //[见小节4.3] binder_defer_work(proc, BINDER_DEFERRED_RELEASE); return 0; }
4.3 binder_defer_work
static void binder_defer_work(struct binder_proc *proc, enum binder_deferred_state defer) { mutex_lock(&binder_deferred_lock); //获取锁 //添加BINDER_DEFERRED_RELEASE proc->deferred_work |= defer; if (hlist_unhashed(&proc->deferred_work_node)) { hlist_add_head(&proc->deferred_work_node, &binder_deferred_list); //向工作队列添加binder_deferred_work [见小节4.4] queue_work(binder_deferred_workqueue, &binder_deferred_work); } mutex_unlock(&binder_deferred_lock); //释放锁 }
4.4 queue_work
//全局工作队列 static struct workqueue_struct *binder_deferred_workqueue; static int __init binder_init(void) { int ret; //创建了名叫“binder”的工作队列 binder_deferred_workqueue = create_singlethread_workqueue("binder"); if (!binder_deferred_workqueue) return -ENOMEM; ... } device_initcall(binder_init);
关于binder_deferred_work的定义:
static DECLARE_WORK(binder_deferred_work, binder_deferred_func); #define DECLARE_WORK(n, f) \ struct work_struct n = __WORK_INITIALIZER(n, f) #define __WORK_INITIALIZER(n, f) { \ .data = WORK_DATA_STATIC_INIT(), \ .entry = { &(n).entry, &(n).entry }, \ .func = (f), \ __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ }
在Binder设备驱动初始化的过程执行binder_init()方法中,调用 create_singlethread_workqueue(“binder”),创建了名叫“binder”的工作队列(workqueue)。 workqueue是kernel提供的一种实现简单而有效的内核线程机制,可延迟执行任务。
此处binder_deferred_work的func为binder_deferred_func,接下来看该方法。
4.5 binder_deferred_func
static void binder_deferred_func(struct work_struct *work) { struct binder_proc *proc; struct files_struct *files; int defer; do { mutex_lock(&binder_main_lock); //获取binder_main_lock mutex_lock(&binder_deferred_lock); preempt_disable(); //禁止CPU抢占 if (!hlist_empty(&binder_deferred_list)) { proc = hlist_entry(binder_deferred_list.first, struct binder_proc, deferred_work_node); hlist_del_init(&proc->deferred_work_node); defer = proc->deferred_work; proc->deferred_work = 0; } else { proc = NULL; defer = 0; } mutex_unlock(&binder_deferred_lock); files = NULL; if (defer & BINDER_DEFERRED_PUT_FILES) { files = proc->files; if (files) proc->files = NULL; } if (defer & BINDER_DEFERRED_FLUSH) binder_deferred_flush(proc); if (defer & BINDER_DEFERRED_RELEASE) binder_deferred_release(proc); //[见小节4.6] mutex_unlock(&binder_main_lock); //释放锁 preempt_enable_no_resched(); if (files) put_files_struct(files); } while (proc); }
可见,binder_release最终调用的是binder_deferred_release; 同理,binder_flush最终调用的是binder_deferred_flush。
4.6 binder_deferred_release
static void binder_deferred_release(struct binder_proc *proc) { struct binder_transaction *t; struct rb_node *n; int threads, nodes, incoming_refs, outgoing_refs, buffers, active_transactions, page_count; hlist_del(&proc->proc_node); //删除proc_node节点 if (binder_context_mgr_node && binder_context_mgr_node->proc == proc) { binder_context_mgr_node = NULL; } //释放binder_thread[见小节4.6.1] threads = 0; active_transactions = 0; while ((n = rb_first(&proc->threads))) { struct binder_thread *thread; thread = rb_entry(n, struct binder_thread, rb_node); threads++; active_transactions += binder_free_thread(proc, thread); } //释放binder_node [见小节4.6.2] nodes = 0; incoming_refs = 0; while ((n = rb_first(&proc->nodes))) { struct binder_node *node; node = rb_entry(n, struct binder_node, rb_node); nodes++; rb_erase(&node->rb_node, &proc->nodes); incoming_refs = binder_node_release(node, incoming_refs); } //释放binder_ref [见小节4.6.3] outgoing_refs = 0; while ((n = rb_first(&proc->refs_by_desc))) { struct binder_ref *ref; ref = rb_entry(n, struct binder_ref, rb_node_desc); outgoing_refs++; binder_delete_ref(ref); } //释放binder_work [见小节4.6.4] binder_release_work(&proc->todo); binder_release_work(&proc->delivered_death); buffers = 0; while ((n = rb_first(&proc->allocated_buffers))) { struct binder_buffer *buffer; buffer = rb_entry(n, struct binder_buffer, rb_node); t = buffer->transaction; if (t) { t->buffer = NULL; buffer->transaction = NULL; } //释放binder_buf [见小节4.6.5] binder_free_buf(proc, buffer); buffers++; } binder_stats_deleted(BINDER_STAT_PROC); page_count = 0; if (proc->pages) { int i; for (i = 0; i < proc->buffer_size / PAGE_SIZE; i++) { void *page_addr; if (!proc->pages[i]) continue; page_addr = proc->buffer + i * PAGE_SIZE; unmap_kernel_range((unsigned long)page_addr, PAGE_SIZE); __free_page(proc->pages[i]); page_count++; } kfree(proc->pages); vfree(proc->buffer); } put_task_struct(proc->tsk); kfree(proc); }
此处proc是来自Bn端的binder_proc
4.6.1 binder_free_thread
static int binder_free_thread(struct binder_proc *proc, struct binder_thread *thread) { struct binder_transaction *t; struct binder_transaction *send_reply = NULL; int active_transactions = 0; rb_erase(&thread->rb_node, &proc->threads); t = thread->transaction_stack; if (t && t->to_thread == thread) send_reply = t; //服务端 while (t) { active_transactions++; if (t->to_thread == thread) { t->to_proc = NULL; t->to_thread = NULL; if (t->buffer) { t->buffer->transaction = NULL; t->buffer = NULL; } t = t->to_parent; } else if (t->from == thread) { t->from = NULL; t = t->from_parent; } } //将发起方线程的return_error值设置为BR_DEAD_REPLY【见小节4.6.4.1】 if (send_reply) binder_send_failed_reply(send_reply, BR_DEAD_REPLY); //[见小节4.6.4] binder_release_work(&thread->todo); kfree(thread); binder_stats_deleted(BINDER_STAT_THREAD); return active_transactions; }
4.6.2 binder_node_release
static int binder_node_release(struct binder_node *node, int refs) { struct binder_ref *ref; int death = 0; list_del_init(&node->work.entry); //[见小节4.6.4] binder_release_work(&node->async_todo); if (hlist_empty(&node->refs)) { kfree(node); //引用为空,则直接删除节点 binder_stats_deleted(BINDER_STAT_NODE); return refs; } node->proc = NULL; node->local_strong_refs = 0; node->local_weak_refs = 0; hlist_add_head(&node->dead_node, &binder_dead_nodes); hlist_for_each_entry(ref, &node->refs, node_entry) { refs++; if (!ref->death) continue; death++; if (list_empty(&ref->death->work.entry)) { //添加BINDER_WORK_DEAD_BINDER事务到todo队列 [见小节5.1] ref->death->work.type = BINDER_WORK_DEAD_BINDER; list_add_tail(&ref->death->work.entry, &ref->proc->todo); wake_up_interruptible(&ref->proc->wait); } } return refs; }
该方法会遍历该binder_node所有的binder_ref, 当存在binder死亡通知,则向相应的binder_ref 所在进程的todo队列添加BINDER_WORK_DEAD_BINDER事务并唤醒处于proc->wait的binder线程,下一步行动见[见小节5.1]。
4.6.3 binder_delete_ref
static void binder_delete_ref(struct binder_ref *ref) { rb_erase(&ref->rb_node_desc, &ref->proc->refs_by_desc); rb_erase(&ref->rb_node_node, &ref->proc->refs_by_node); if (ref->strong) binder_dec_node(ref->node, 1, 1); hlist_del(&ref->node_entry); binder_dec_node(ref->node, 0, 1); if (ref->death) { list_del(&ref->death->work.entry); kfree(ref->death); binder_stats_deleted(BINDER_STAT_DEATH); } kfree(ref); binder_stats_deleted(BINDER_STAT_REF); }
4.6.4 binder_release_work
static void binder_release_work(struct list_head *list) { struct binder_work *w; while (!list_empty(list)) { w = list_first_entry(list, struct binder_work, entry); list_del_init(&w->entry); //删除binder_work switch (w->type) { case BINDER_WORK_TRANSACTION: { struct binder_transaction *t; t = container_of(w, struct binder_transaction, work); if (t->buffer->target_node && !(t->flags & TF_ONE_WAY)) { //发送failed回复【见小节4.6.4.1】 binder_send_failed_reply(t, BR_DEAD_REPLY); } else { t->buffer->transaction = NULL; kfree(t); binder_stats_deleted(BINDER_STAT_TRANSACTION); } } break; case BINDER_WORK_TRANSACTION_COMPLETE: { kfree(w); binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE); } break; case BINDER_WORK_DEAD_BINDER_AND_CLEAR: case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: { struct binder_ref_death *death; death = container_of(w, struct binder_ref_death, work); kfree(death); binder_stats_deleted(BINDER_STAT_DEATH); } break; default: break; } } }
4.6.4.1 binder_send_failed_reply
static void binder_send_failed_reply(struct binder_transaction *t, uint32_t error_code) { struct binder_thread *target_thread; struct binder_transaction *next; while (1) { target_thread = t->from; if (target_thread) { if (target_thread->return_error != BR_OK && target_thread->return_error2 == BR_OK) { target_thread->return_error2 = target_thread->return_error; target_thread->return_error = BR_OK; } if (target_thread->return_error == BR_OK) { binder_pop_transaction(target_thread, t); //设置错误的返回码,并唤醒等待线程 target_thread->return_error = error_code; wake_up_interruptible(&target_thread->wait); } return; } next = t->from_parent; binder_pop_transaction(target_thread, t); if (next == NULL) { return; } t = next; } }
4.6.5 binder_free_buf
static void binder_free_buf(struct binder_proc *proc, struct binder_buffer *buffer) { size_t size, buffer_size; buffer_size = binder_buffer_size(proc, buffer); size = ALIGN(buffer->data_size, sizeof(void *)) + ALIGN(buffer->offsets_size, sizeof(void *)); if (buffer->async_transaction) { proc->free_async_space += size + sizeof(struct binder_buffer); } binder_update_page_range(proc, 0, (void *)PAGE_ALIGN((uintptr_t)buffer->data), (void *)(((uintptr_t)buffer->data + buffer_size) & PAGE_MASK), NULL); rb_erase(&buffer->rb_node, &proc->allocated_buffers); buffer->free = 1; if (!list_is_last(&buffer->entry, &proc->buffers)) { struct binder_buffer *next = list_entry(buffer->entry.next, struct binder_buffer, entry); if (next->free) { rb_erase(&next->rb_node, &proc->free_buffers); binder_delete_free_buffer(proc, next); } } if (proc->buffers.next != &buffer->entry) { struct binder_buffer *prev = list_entry(buffer->entry.prev, struct binder_buffer, entry); if (prev->free) { binder_delete_free_buffer(proc, buffer); rb_erase(&prev->rb_node, &proc->free_buffers); buffer = prev; } } binder_insert_free_buffer(proc, buffer); }
4.6.6 小结
binder_deferred_release的主要工作有:
- binder_free_thread: proc->threads所有线程
- binder_send_failed_reply(send_reply, BR_DEAD_REPLY):将发起方线程的return_error值设置为BR_DEAD_REPLY,让其直接返回;
- binder_node_release: proc->nodes所有节点
- binder_release_work(&node->async_todo)
- node->refs的所有死亡回调
- binder_delete_ref: proc->refs_by_desc所有引用
- 清除引用
- binder_release_work: proc->todo, proc->delivered_death
- binder_send_failed_reply(t, BR_DEAD_REPLY)
- binder_free_buf: proc->allocated_buffers所有已分配buffer
- 释放已分配的buffer
- __free_page: proc->pages所有物理内存页
不论是binder线程正在处理的事务,还是位于进程todo队列的事务,当进程被杀后,则会立马通知请求发起方来结束请求。
五. 处理死亡通知
前面[小节4.6.2] binder_node_release的过程会向BINDER_WORK_DEAD_BINDER事务并唤醒处于proc->wait的binder线程。
5.1 binder_thread_read
static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed, int non_block) ... //唤醒等待中的binder线程 wait_event_freezable_exclusive(proc->wait, binder_has_proc_work(proc, thread)); binder_lock(__func__); //加锁 if (wait_for_proc_work) proc->ready_threads--; //空闲的binder线程减1 thread->looper &= ~BINDER_LOOPER_STATE_WAITING; while (1) { uint32_t cmd; struct binder_transaction_data tr; struct binder_work *w; struct binder_transaction *t = NULL; //从todo队列拿出前面放入的binder_work, 此时type为BINDER_WORK_DEAD_BINDER if (!list_empty(&thread->todo)) { w = list_first_entry(&thread->todo, struct binder_work, entry); } else if (!list_empty(&proc->todo) && wait_for_proc_work) { w = list_first_entry(&proc->todo, struct binder_work, entry); } switch (w->type) { case BINDER_WORK_DEAD_BINDER: { struct binder_ref_death *death; uint32_t cmd; death = container_of(w, struct binder_ref_death, work); if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) ... else cmd = BR_DEAD_BINDER; //进入此分支 put_user(cmd, (uint32_t __user *)ptr);//拷贝到用户空间[见小节5.2] ptr += sizeof(uint32_t); //此处的cookie是前面传递的BpBinder put_user(death->cookie, (binder_uintptr_t __user *)ptr); ptr += sizeof(binder_uintptr_t); if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) { ... } else //把该work加入到delivered_death队列 list_move(&w->entry, &proc->delivered_death); if (cmd == BR_DEAD_BINDER) goto done; } break; } } ... return 0; }
将命令BR_DEAD_BINDER写到用户空间,此时用户空间执行过程:
5.2 IPC.getAndExecuteCommand
status_t IPCThreadState::getAndExecuteCommand()
{
status_t result;
int32_t cmd;
result = talkWithDriver(); //该Binder Driver进行交互 if (result >= NO_ERROR) { size_t IN = mIn.dataAvail(); if (IN < sizeof(int32_t)) return result; cmd = mIn.readInt32(); //读取命令 pthread_mutex_lock(&mProcess->mThreadCountLock); mProcess->mExecutingThreadsCount++; pthread_mutex_unlock(&mProcess->mThreadCountLock); result = executeCommand(cmd); //【见小节5.3】 pthread_mutex_lock(&mProcess->mThreadCountLock); mProcess->mExecutingThreadsCount--; pthread_cond_broadcast(&mProcess->mThreadCountDecrement); pthread_mutex_unlock(&mProcess->mThreadCountLock); set_sched_policy(mMyThreadId, SP_FOREGROUND); } return result; }
5.3 IPC.executeCommand
status_t IPCThreadState::executeCommand(int32_t cmd) { BBinder* obj; RefBase::weakref_type* refs; status_t result = NO_ERROR; switch ((uint32_t)cmd) { case BR_DEAD_BINDER: { BpBinder *proxy = (BpBinder*)mIn.readPointer(); proxy->sendObituary(); //[见小节5.4] mOut.writeInt32(BC_DEAD_BINDER_DONE); mOut.writePointer((uintptr_t)proxy); } break; ... } ... return result; }
同一个bp端即便注册多次死亡通知,但只会发送一次死亡回调。
5.4 Bp.sendObituary
void BpBinder::sendObituary()
{
mAlive = 0; if (mObitsSent) return; mLock.lock(); Vector<Obituary>* obits = mObituaries; if(obits != NULL) { IPCThreadState* self = IPCThreadState::self(); //清空死亡通知[见小节6.2] self->clearDeathNotification(mHandle, this); self->flushCommands(); mObituaries = NULL; } mObitsSent = 1; mLock.unlock(); if (obits != NULL) { const size_t N = obits->size(); for (size_t i=0; i<N; i++) { //发送死亡通知 [见小节5.5] reportOneDeath(obits->itemAt(i)); } delete obits; } }
5.5 reportOneDeath
void BpBinder::reportOneDeath(const Obituary& obit) { //将弱引用提升到sp sp<DeathRecipient> recipient = obit.recipient.promote(); if (recipient == NULL) return; //回调死亡通知的方法 recipient->binderDied(this); }
本文开头的实例传递的是AppDeathRecipient,那么回调如下方法。
5.6 binderDied
private final class AppDeathRecipient implements IBinder.DeathRecipient { ... public void binderDied() { synchronized(ActivityManagerService.this) { appDiedLocked(mApp, mPid, mAppThread, true); } } }
六. unlinkToDeath
6.1 unlinkToDeath
status_t BpBinder::unlinkToDeath(
const wp<DeathRecipient>& recipient, void* cookie, uint32_t flags, wp<DeathRecipient>* outRecipient) { AutoMutex _l(mLock); if (mObitsSent) { return DEAD_OBJECT; } const size_t N = mObituaries ? mObituaries->size() : 0; for (size_t i=0; i<N; i++) { const Obituary& obit = mObituaries->itemAt(i); if ((obit.recipient == recipient || (recipient == NULL && obit.cookie == cookie)) && obit.flags == flags) { if (outRecipient != NULL) { *outRecipient = mObituaries->itemAt(i).recipient; } mObituaries->removeAt(i); //移除死亡通知 if (mObituaries->size() == 0) { //清理死亡通知 self->clearDeathNotification(mHandle, this); self->flushCommands(); delete mObituaries; mObituaries = NULL; } return NO_ERROR; } } return NAME_NOT_FOUND; }
6.2 clearDeathNotification
status_t IPCThreadState::clearDeathNotification(int32_t handle, BpBinder* proxy) { mOut.writeInt32(BC_CLEAR_DEATH_NOTIFICATION); mOut.writeInt32((int32_t)handle); mOut.writePointer((uintptr_t)proxy); return NO_ERROR; }
写入BC_CLEAR_DEATH_NOTIFICATION命令,再经过flushCommands(),则进入Kernel层。
6.3 Kernel层取消死亡通知
6.3.1 binder_thread_write
static int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed) { uint32_t cmd; //proc, thread都是指当前发起端进程的信息 struct binder_context *context = proc->context; void __user *buffer = (void __user *)(uintptr_t)binder_buffer; void __user *ptr = buffer + *consumed; void __user *end = buffer + size; while (ptr < end && thread->return_error == BR_OK) { get_user(cmd, (uint32_t __user *)ptr); //获取BC_CLEAR_DEATH_NOTIFICATION ptr += sizeof(uint32_t); switch (cmd) { case BC_REQUEST_DEATH_NOTIFICATION: case BC_CLEAR_DEATH_NOTIFICATION: { //清除死亡通知 uint32_t target; void __user *cookie; struct binder_ref *ref; struct binder_ref_death *death; get_user(target, (uint32_t __user *)ptr); //获取target ptr += sizeof(uint32_t); get_user(cookie, (void __user * __user *)ptr); ptr += sizeof(void *); ref = binder_get_ref(proc, target); //拿到目标服务的binder_ref if (cmd == BC_REQUEST_DEATH_NOTIFICATION) { ... } else { if (ref->death == NULL) { break; } death = ref->death; if (death->cookie != cookie) { break; //比较是否同一个BpBinder } ref->death = NULL; //设置死亡通知为NULL if (list_empty(&death->work.entry)) { //添加BINDER_WORK_CLEAR_DEATH_NOTIFICATION事务 death->work.type = BINDER_WORK_CLEAR_DEATH_NOTIFICATION; if (thread->looper & (BINDER_LOOPER_STATE_REGISTERED | BINDER_LOOPER_STATE_ENTERED)) { list_add_tail(&death->work.entry, &thread->todo); } else { list_add_tail(&death->work.entry, &proc->todo); wake_up_interruptible(&proc->wait); } } else { death->work.type = BINDER_WORK_DEAD_BINDER_AND_CLEAR; } } } break; case ...; } } }
添加BINDER_WORK_CLEAR_DEATH_NOTIFICATION事务
6.3.2 binder_thread_read
static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed, int non_block) ... //唤醒等待中的binder线程 wait_event_freezable_exclusive(proc->wait, binder_has_proc_work(proc, thread)); binder_lock(__func__); //加锁 if (wait_for_proc_work) proc->ready_threads--; //空闲的binder线程减1 thread->looper &= ~BINDER_LOOPER_STATE_WAITING; while (1) { uint32_t cmd; struct binder_transaction_data tr; struct binder_work *w; struct binder_transaction *t = NULL; //从todo队列拿出前面放入的binder_work, 此时type为BINDER_WORK_DEAD_BINDER if (!list_empty(&thread->todo)) { w = list_first_entry(&thread->todo, struct binder_work, entry); } else if (!list_empty(&proc->todo) && wait_for_proc_work) { w = list_first_entry(&proc->todo, struct binder_work, entry); } switch (w->type) { case BINDER_WORK_DEAD_BINDER: case BINDER_WORK_DEAD_BINDER_AND_CLEAR: case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: { struct binder_ref_death *death; uint32_t cmd; death = container_of(w, struct binder_ref_death, work); if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) cmd = BR_CLEAR_DEATH_NOTIFICATION_DONE; //清除完成 ... if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) { list_del(&w->entry); //清除死亡通知的work队列 kfree(death); binder_stats_deleted(BINDER_STAT_DEATH); } ... if (cmd == BR_DEAD_BINDER) goto done; } break; } } ... return 0; }
需要再回到用户空间,查看BR_CLEAR_DEATH_NOTIFICATION_DONE处理过程
6.4 IPC.executeCommand
status_t IPCThreadState::executeCommand(int32_t cmd) { BBinder* obj; RefBase::weakref_type* refs; status_t result = NO_ERROR; switch ((uint32_t)cmd) { case BR_CLEAR_DEATH_NOTIFICATION_DONE: { BpBinder *proxy = (BpBinder*)mIn.readPointer(); //减少弱引用 proxy->getWeakRefs()->decWeak(proxy); } break; ... } ... return result; }
七. 结论
对于Binder IPC进程都会打开/dev/binder文件,当进程异常退出时,Binder驱动会保证释放将要退出的进程中没有正常关闭的/dev/binder文件,实现机制是binder驱动通过调用/dev/binder文件所对应的release回调函数,执行清理工作,并且检查BBinder是否有注册死亡通知,当发现存在死亡通知时,那么就向其对应的BpBinder端发送死亡通知消息。
死亡回调DeathRecipient只有Bp才能正确使用,因为DeathRecipient用于监控Bn端挂掉的情况, 如果Bn建立跟自己的死亡通知,自己进程都挂了,也就无法通知。
每个BpBinder都有一个记录DeathRecipient列表的对象DeathRecipientList。
7.1 流程图
图解:点击查看大图
linkToDeath过程
- requestDeathNotification过程向驱动传递的命令BC_REQUEST_DEATH_NOTIFICATION,参数有mHandle和BpBinder对象;
- binder_thread_write()过程,同一个BpBinder可以注册多个死亡回调,但Kernel只允许注册一次死亡通知。
- 注册死亡回调的过程,实质就是向binder_ref结构体添加binder_ref_death指针, binder_ref_death的cookie记录BpBinder指针。
unlinkToDeath过程
- unlinkToDeath只有当该BpBinder的所有mObituaries都被移除,才会向驱动层执行清除死亡通知的动作, 否则只是从native层移除某个recipient。
- clearDeathNotification过程向驱动传递BC_CLEAR_DEATH_NOTIFICATION,参数有mHandle和BpBinder对象;
- binder_thread_write()过程,将BINDER_WORK_CLEAR_DEATH_NOTIFICATION事务添加当前当前进程/线程的todo队列
触发死亡回调
- 服务实体进程:binder_release过程会执行binder_node_release(),loop该binder_node下所有的ref->death对象。 当存在,则将BINDER_WORK_DEAD_BINDER事务添加ref->proc->todo(即ref所在进程的todo队列)
- 引用所在进程:执行binder_thread_read()过程,向用户空间写入BR_DEAD_BINDER,并触发死亡回调。
- 发送死亡通知sendObituary